示例#1
0
    def set_fstats(self, fstats):
        self.all_spots = None
        self.spots = collections.OrderedDict()
        self.total_integrated_signal = {}
        self.mean_integrated_signal= {}
        self.median_integrated_signal= {}
        self.n_spots = {}

        for k in sorted(fstats.nodes.keys()):
            node = fstats.nodes[k] # XXX some data in node.data will be corrupted (e.g. resolution, wts) but x and y coordinates look ok (it works later). why?
            if node.descriptor == "spots_total":
                self.all_spots = node.data
            else:
                self.spots[node.descriptor] = node.data

        # Pre-calculate stats
        for k in self.keys():
            summed_wts = [flex.sum(spot.wts) for spot in self.get_spots(k)]
            self.intensities[k] = summed_wts
            self.resolutions[k] = [spot.resolution for spot in self.get_spots(k)]

            total_summed = flex.sum(flex.double(summed_wts))

            if len(summed_wts) > 0:
                self.mean_integrated_signal[k] = total_summed / len(summed_wts)
                self.median_integrated_signal[k] = flex.median(flex.double(summed_wts))
            else:
                self.mean_integrated_signal[k] = 0.
                self.median_integrated_signal[k] = 0.

            self.total_integrated_signal[k] = total_summed
            self.n_spots[k] = len(summed_wts)
示例#2
0
def dump_R_in_bins(obs, calc, scale_B=True, log_out=sys.stdout, n_bins=20):
    #obs, calc = obs.common_sets(calc, assert_is_similar_symmetry=False)

    if scale_B:
        scale, B = kBdecider(obs, calc).run()
        d_star_sq = calc.d_star_sq().data()
        calc = calc.customized_copy(data = scale * flex.exp(-B*d_star_sq) * calc.data())

    binner = obs.setup_binner(n_bins=n_bins)
    count=0
    log_out.write("dmax - dmin: R (nref) <I1> <I2> scale\n")

    for i_bin in binner.range_used():
        tmp_obs = obs.select(binner.bin_indices() == i_bin)
        tmp_calc = calc.select(binner.bin_indices() == i_bin)

        low = binner.bin_d_range(i_bin)[0]
        high = binner.bin_d_range(i_bin)[1]

        if scale_B:
            scale = 1.
        else:
            scale = flex.sum(tmp_obs.data()*tmp_calc.data()) / flex.sum(flex.pow2(tmp_calc.data()))

        R = flex.sum(flex.abs(tmp_obs.data() - scale*tmp_calc.data())) / flex.sum(0.5 * tmp_obs.data() + 0.5 * scale*tmp_calc.data())

        log_out.write("%5.2f - %5.2f: %.5f (%d) %.1f %.1f %.3e\n" % (low, high, R, len(tmp_obs.data()),
                                                                 flex.mean(tmp_obs.data()), flex.mean(tmp_calc.data()),
                                                                 scale))

    log_out.write("Overall R = %.5f (scale=%.3e, %%comp=%.3f)\n\n" % (calc_R(obs, calc, do_scale=not scale_B) + (obs.completeness()*100.,)) )
def scale_data(indices, iobs, scale_ref, parameter, calc_cc):
    k, b, cc = 1, float("nan"), float("nan")

    sortp = yamtbx_utils_ext.sort_permutation_fast_less(indices)
    indices = indices.select(sortp)
    iobs = iobs.select(sortp)

    sel0, sel1 = yamtbx_utils_ext.my_common_indices(scale_ref.indices(), indices)
    #indices = indices.select(sel1)
    iobs_c = iobs.select(sel1)
    ref_c = scale_ref.data().select(sel0)

    if iobs_c.size() < 10 and ref_c.size() < 10:
        return k, b, cc

    if parameter == "k":
        k = flex.sum(ref_c*iobs_c) / flex.sum(flex.pow2(iobs_c))
    elif parameter == "kb":
        from yamtbx.dataproc.scale_data import kBdecider
        kbd = kBdecider(scale_ref,
                        miller.array(scale_ref.customized_copy(indices=indices),data=iobs))
        k, b = kbd.run()
    else:
        raise "Never reaches here"
    
    if calc_cc:
        corr = flex.linear_correlation(ref_c, iobs_c)
        if corr.is_well_defined(): cc = corr.coefficient()

    return k, b, cc
示例#4
0
 def df(self, x):
     k, B = float(x[0]), float(x[1])
     d_star_sq = self.calc.d_star_sq().data()
     tmp = self.obs.data() - k * flex.exp(-B*d_star_sq) * self.calc.data()
     dfdk = flex.sum(-2. * tmp * flex.exp(-B*d_star_sq) * self.calc.data())
     dfdB = flex.sum(2. * tmp * k * d_star_sq * flex.exp(-B*d_star_sq) * self.calc.data())
     return numpy.array([dfdk, dfdB])
示例#5
0
def calc_k(f_obs, i_calc):
    fc = flex.sqrt(i_calc)
    num = flex.sum(f_obs * fc)
    den = flex.sum(fc * fc)
    assert den != 0
    k = num / den
    return k
示例#6
0
    def method2_include_pehHKL_I_explicitly():
        # There's no reason why we can't get the Gi's by analytical least squares
        skeys = list(G.images_strong.keys())
        skeys.sort()
        for key in skeys:
            print("image", key)
            numerator = 0.
            denominator = 0.
            nkeys = len(G.images_strong[key])

            for ikey, HKL in enumerate(G.images_strong[key]):
                MD = G.images_strong[key][HKL]
                #from IPython import embed; embed()

                terms1 = MD["model"] * per_HKL_I[HKL] / MD["simtbx_intensity"]
                terms2 = terms1 * terms1
                terms0 = MD["obs"] * terms1
                numerator += flex.sum(terms0)
                denominator += flex.sum(terms2)
            G.images_Gi[key] = numerator / denominator

            for ikey, HKL in enumerate(G.images_strong[key]):
                plt.subplot(nkeys, 1, 1 + ikey)
                MD = G.images_strong[key][HKL]
                assert len(MD["obs"]) == 61
                print(HKL, MD, "7122 lookup", per_HKL_I_7122[HKL],
                      per_HKL_I_7122[HKL] / MD["simtbx_intensity"])
                plt.plot(range(7090, 7151), (G.images_Gi[key]) * MD["model"] *
                         per_HKL_I[HKL] / MD["simtbx_intensity"], "b-")
                plt.plot(range(7090, 7151), MD["obs"], "r-")
#start here.  can we shwo we are actually at a minimum of teh target function, considering it is LSQ?
            plt.show()
            if key % 100 == 0: print(key, "Gi:", G.images_Gi[key])
示例#7
0
 def r_value(self, out):
     top = flex.abs(self.der_primset.data() - self.nat_primset.data())
     bottom = flex.abs(self.der_primset.data() +
                       self.nat_primset.data()) / 2.0
     top = flex.sum(top)
     bottom = flex.sum(bottom)
     print >> out, "Current R value: %4.3f" % (top / bottom)
def calc_k(f_obs, i_calc):
  fc = flex.sqrt(i_calc)
  num = flex.sum(f_obs * fc)
  den = flex.sum(fc * fc)
  assert den != 0
  k = num / den
  return k
示例#9
0
  def method2_include_pehHKL_I_explicitly():
   # There's no reason why we can't get the Gi's by analytical least squares
   skeys = list(G.images_strong.keys())
   skeys.sort()
   for key in skeys:
    print ("image",key)
    numerator = 0.; denominator = 0.
    nkeys = len(G.images_strong[key])

    for ikey, HKL in enumerate(G.images_strong[key]):
      #plt.subplot(nkeys,1,1+ikey)
      MD = G.images_strong[key][HKL]
      #print (HKL,MD,"7122 lookup",per_HKL_I_7122[HKL],per_HKL_I_7122[HKL]/MD["simtbx_intensity"])
      #plt.plot(range(7090,7151),MD["model"] * per_HKL_I[HKL] / MD["simtbx_intensity"],"k-")
      #plt.plot(range(7090,7151),1E10*MD["obs"],"r-")
      terms1 = MD["model"] * per_HKL_I[HKL] / MD["simtbx_intensity"]
      terms2 = terms1 * terms1
      terms0 = MD["obs"] * terms1
      numerator+=flex.sum(terms0)
      denominator+=flex.sum(terms2)
    G.images_Gi[key]=numerator/denominator

    for ikey, HKL in enumerate(G.images_strong[key]):
      plt.subplot(nkeys,1,1+ikey)
      MD = G.images_strong[key][HKL]
      print (HKL,MD,"7122 lookup",per_HKL_I_7122[HKL],per_HKL_I_7122[HKL]/MD["simtbx_intensity"])
      plt.plot(range(7090,7151),(G.images_Gi[key]) * MD["model"] * per_HKL_I[HKL] / MD["simtbx_intensity"],"b-")
      plt.plot(range(7090,7151),MD["obs"],"r-")

    plt.show()
    if key%100==0: print (key, "Gi:", G.images_Gi[key])
示例#10
0
def exercise_01(grid_step = 0.03, d_min = 1.0, wing_cutoff = 1.e-9):
  xrs = random_structure.xray_structure(
    space_group_info       = sgtbx.space_group_info("P 1"),
    elements               = ["O","N","C","P","S","U","AU"]*1,
    random_u_iso           = True,
    general_positions_only = False)
  # avoid excessive_range_error_limit crash
  bs = xrs.extract_u_iso_or_u_equiv()*adptbx.u_as_b(1)
  sel = bs < 1
  bs = bs.set_selected(sel, 1)
  xrs.set_b_iso(values = bs)
  #
  p = xrs.unit_cell().parameters()
  timer = user_plus_sys_time()
  res = manager(nx = int(p[0]/grid_step),
                ny = int(p[1]/grid_step),
                nz = int(p[2]/grid_step),
                scattering_type_registry = xrs.scattering_type_registry(),
                unit_cell = xrs.unit_cell(),
                scatterers = xrs.scatterers(),
                wing_cutoff = wing_cutoff)
  print "time: %10.4f" % (timer.elapsed())
  f_calc_dir = xrs.structure_factors(
    d_min     = d_min,
    algorithm = "direct").f_calc()
  #
  f_calc_den = f_calc_dir.structure_factors_from_map(map = res.density_array,
    use_scale = True)
  f1 = flex.abs(f_calc_dir.data())
  f2 = flex.abs(f_calc_den.data())
  r = flex.sum(flex.abs(f1-f2))/flex.sum(f2)
  print "r-factor:", r
  assert r < 1.e-4, r
示例#11
0
 def r_value(self,out):
   top = flex.abs(self.der_primset.data()-
                  self.nat_primset.data())
   bottom = flex.abs(self.der_primset.data() +
                     self.nat_primset.data())/2.0
   top=flex.sum(top)
   bottom=flex.sum(bottom)
   print >> out, "Current R value: %4.3f"%(top/bottom)
示例#12
0
def linear_fit2(x,y,s): # now constant subtraction, original crysol approach
  var = s*s   # x Ical; y Iexp; s sigma
  sum_x2 = flex.sum( x*x/var )
  sum_xy = flex.sum( x*y/var )
  N = x.size()
  scale = sum_xy/sum_x2
  offset = 0
  return scale, offset
示例#13
0
def exercise_sampled_model_density_1():
    import iotbx.pdb
    pdb_str1 = """
CRYST1   10.000   10.000   10.000  90.00  90.00  90.00 P 1
ATOM      1  CB  PHE A   1       5.000   5.000   5.000  1.00 15.00           C
ANISOU    1  CB  PHE A   1      900   2900    100      0      0      0       C
TER
END
"""
    pdb_str2 = """
CRYST1   10.000   10.000   10.000  90.00  90.00  90.00 P 1
ATOM      1  CB  PHE A   1       5.000   5.000   5.000  1.00 15.00           C
TER
END
"""
    #
    for pdb_str in [pdb_str1, pdb_str2]:
        print
        pdb_inp = iotbx.pdb.input(source_info=None, lines=pdb_str)
        xrs = pdb_inp.xray_structure_simple()
        #
        crystal_gridding = maptbx.crystal_gridding(
            unit_cell=xrs.unit_cell(),
            space_group_info=xrs.space_group_info(),
            symmetry_flags=maptbx.use_space_group_symmetry,
            step=0.1)
        m = mmtbx.real_space.sampled_model_density(
            xray_structure=xrs, n_real=crystal_gridding.n_real()).data()
        #
        max_index = [(i - 1) // 2 for i in crystal_gridding.n_real()]
        complete_set = miller.build_set(
            crystal_symmetry=xrs.crystal_symmetry(),
            anomalous_flag=False,
            max_index=max_index)
        indices = complete_set.indices()
        indices.append((0, 0, 0))
        #
        complete_set = complete_set.customized_copy(indices=indices)
        f_obs_cmpl = complete_set.structure_factors_from_map(
            map=m, use_scale=True, anomalous_flag=False, use_sg=False)
        fc = complete_set.structure_factors_from_scatterers(
            xray_structure=xrs).f_calc()
        #
        f1 = abs(fc).data()
        f2 = abs(f_obs_cmpl).data()
        r = 200 * flex.sum(flex.abs(f1 - f2)) / flex.sum(f1 + f2)
        assert r < 0.5
        print r
        #
        fft_map = miller.fft_map(crystal_gridding=crystal_gridding,
                                 fourier_coefficients=f_obs_cmpl)
        fft_map.apply_volume_scaling()
        m_ = fft_map.real_map_unpadded()
        print m.as_1d().min_max_mean().as_tuple()
        print m_.as_1d().min_max_mean().as_tuple()
        assert approx_equal(m.as_1d().min_max_mean().as_tuple(),
                            m_.as_1d().min_max_mean().as_tuple(),
                            1.e-3)  # Must be smaller!?
def exercise_py_LS(obs, f_calc, weighting, verbose):
  weighting.computing_derivatives_wrt_f_c = True
  r = xray.unified_least_squares_residual(obs, weighting=weighting)
  rt = r(f_calc, compute_derivatives=True)
  if obs.is_xray_amplitude_array():
    assert(isinstance(rt, xray.targets_least_squares_residual))
  elif obs.is_xray_intensity_array():
    assert(isinstance(rt, xray.targets_least_squares_residual_for_intensity))
  scale_factor = rt.scale_factor()
  gr_ana = rt.derivatives()
  K = scale_factor
  w = weighting.weights
  if w is not None: w = w.deep_copy()
  dw_dfc = weighting.derivatives_wrt_f_c
  if dw_dfc is not None: dw_dfc = dw_dfc.deep_copy()

  y_o = obs.data()
  if w is None: w = flex.double(obs.size(), 1)
  sum_w_y_o_sqr = flex.sum(w * y_o * y_o)
  f_c = f_calc.data().deep_copy()
  if obs.is_xray_amplitude_array():
    y_c = flex.abs(f_c)
    der = f_c * (1/y_c)
  elif obs.is_xray_intensity_array():
    y_c = flex.norm(f_c)
    der = 2 * f_c
  gr_explicit = w*2*K*(K*y_c - y_o) * der / sum_w_y_o_sqr
  sum_w_squares = flex.sum(w*flex.pow2(K*y_c - y_o))
  assert approx_equal(gr_ana, gr_explicit)

  gr_fin = flex.complex_double()
  eps = 1.e-6
  for i_refl in xrange(obs.size()):
    gc = []
    for i_part in [0,1]:
      fc0 = f_calc.data()[i_refl]
      ts = []
      for signed_eps in [eps,-eps]:
        if (i_part == 0):
          f_calc.data()[i_refl] = complex(fc0.real + signed_eps, fc0.imag)
        else:
          f_calc.data()[i_refl] = complex(fc0.real, fc0.imag + signed_eps)
        rt = r(f_calc, compute_derivatives=False, scale_factor=scale_factor)
        ts.append(rt.target())
      f_calc.data()[i_refl] = fc0
      gc.append((ts[0]-ts[1])/(2*eps))
    gr_fin.append(complex(*gc))
  if (verbose):
    print "ana:", list(gr_ana)
    print "fin:", list(gr_fin)
  if dw_dfc is None:
    assert approx_equal(gr_fin, gr_ana)
  else:
    gr_total_ana = ( gr_ana
                     + dw_dfc*(flex.pow2(K*y_c - y_o)/sum_w_y_o_sqr
                        - sum_w_squares*flex.pow2(y_o)/sum_w_y_o_sqr**2) )
    assert approx_equal(gr_fin, gr_total_ana)
示例#15
0
    def _rmsds_core(self, reflections):
        """calculate unweighted RMSDs"""

        resid_x = flex.sum(reflections["x_resid2"])
        resid_y = flex.sum(reflections["y_resid2"])
        resid_z = flex.sum(reflections["delpsical2"])
        n = len(reflections)
        rmsds = (sqrt(resid_x / n), sqrt(resid_y / n), sqrt(resid_z / n))
        return rmsds
示例#16
0
 def get_r_split(self):
     try:
         r_split_bin = (1 / math.sqrt(2)) * (
             flex.sum(flex.abs(self.I_even - self.I_odd)) /
             (flex.sum(self.I_even + self.I_odd) * 0.5))
     except Exception, e:
         print "Warning: R_split calculation failed."
         print e
         r_split_bin = 0
示例#17
0
def poly_residual(xp, y, params):
    """Compute the residual between the observations y[i] and sum_j
    params[j] x[i]^j. For efficiency, x[i]^j are pre-calculated in xp."""

    c = len(y)

    e = flex.double([flex.sum(xp[j] * params) for j in range(c)])

    return flex.sum(flex.pow2(y - e))
示例#18
0
def algorithm_3(i_obs, fc, f_masks):
    """
  Unphased two-step search
  """
    F = [fc] + f_masks
    Gnm = []
    cs = {}
    cntr = 0
    nm = []
    # Compute and store Gnm
    for n, Fn in enumerate(F):
        for m, Fm in enumerate(F):
            if m < n:
                continue
            Gnm.append(flex.real(Fn.data() * flex.conj(Fm.data())))
            cs[(n, m)] = cntr
            cntr += 1
            nm.append((n, m))
    # Keep track of indices for "upper triangular matrix vs full"
    for k, v in zip(list(cs.keys()), list(cs.values())):
        i, j = k
        if i == j: continue
        else: cs[(j, i)] = v
    # Generate and solve system Ax=b, x = A_1*b
    A = []
    b = []
    for u, Gnm_u in enumerate(Gnm):
        for v, Gnm_v in enumerate(Gnm):
            scale = 2
            n, m = nm[v]
            if n == m: scale = 1
            A.append(flex.sum(Gnm_u * Gnm_v) * scale)
        b.append(flex.sum(Gnm_u * i_obs.data()))
    A = matrix.sqr(A)
    A_1 = A.inverse()
    b = matrix.col(b)
    x = A_1 * b
    # Expand Xmn from solution x
    Xmn = []
    for n, Fn in enumerate(F):
        rows = []
        for m, Fm in enumerate(F):
            x_ = x[cs[(n, m)]]
            rows.append(x_)
        Xmn.append(rows)
    # Do formula (19)
    lnK = []
    for j, Fj in enumerate(F):
        t1 = flex.sum(flex.log(flex.double(Xmn[j])))
        t2 = 0
        for n, Fn in enumerate(F):
            for m, Fm in enumerate(F):
                t2 += math.log(Xmn[n][m])
        t2 = t2 / (2 * len(F))
        lnK.append(1 / len(F) * (t1 - t2))
    return [math.exp(x) for x in lnK]
示例#19
0
def calc_R(obs, calc, do_scale=True):
    #obs, calc = obs.common_sets(calc, assert_is_similar_symmetry=False)
    if do_scale:
        scale = flex.sum(obs.data()*calc.data()) / flex.sum(flex.pow2(calc.data()))
    else:
        scale = 1.

    R = flex.sum(flex.abs(obs.data() - scale*calc.data())) / flex.sum(0.5 * obs.data() + 0.5 * scale*calc.data())

    return R, scale
示例#20
0
 def get_r_split(self):
     try:
         r_split_bin = (1 / math.sqrt(2)) * (
             flex.sum(flex.abs(self.I_even - self.I_odd)) /
             (flex.sum(self.I_even + self.I_odd) * 0.5))
     except Exception as e:
         print("Warning: R_split calculation failed.")
         print(e)
         r_split_bin = 0
     return r_split_bin if self.get_size() else 0
示例#21
0
  def _rmsds_core(self, reflections):
    """calculate unweighted RMSDs"""

    resid_x = flex.sum(reflections['x_resid2'])
    resid_y = flex.sum(reflections['y_resid2'])
    resid_z = flex.sum(reflections['delpsical2'])
    n = len(reflections)
    rmsds = (sqrt(resid_x / n),
             sqrt(resid_y / n),
             sqrt(resid_z / n))
    return rmsds
示例#22
0
 def find_similar_matches(self, target, matches, used, overlap_thres):
     tmp_a = flex.double(self.set_a.size(), 0.0).set_selected(target[0], 1.0)
     result = flex.size_t()
     for ii in xrange(len(matches)):
         if not used[ii]:
             match = matches[ii][0]
             tmp_b = flex.double(self.set_a.size(), 0.0).set_selected(match, 1.0)
             similar = flex.sum(tmp_a * tmp_b) / flex.sum(tmp_a)
             if similar > overlap_thres:
                 result.append(ii)
     return result
示例#23
0
 def find_similar_matches( self, target, matches, used, overlap_thres ):
   tmp_a =  flex.double(  self.set_a.size() , 0.0 ).set_selected( target[0], 1.0 )
   result = flex.size_t()
   for ii in range(len(matches) ):
     if not used[ii]:
       match = matches[ii][0]
       tmp_b = flex.double( self.set_a.size(), 0.0 ).set_selected( match, 1.0 )
       similar = flex.sum( tmp_a*tmp_b )/flex.sum( tmp_a )
       if similar > overlap_thres:
         result.append( ii )
   return( result )
示例#24
0
def _scale_helper(num, den, selection=None, num_num=False):
  from cctbx.array_family import flex
  if (selection is not None):
    num = num.select(selection)
    den = den.select(selection)
  if (den.size() == 0):
    raise RuntimeError("No data for scale calculation.")
  denom = flex.sum(den*den)
  if (denom == 0):
    raise RuntimeError("Zero denominator in scale calculation.")
  if (num_num): return flex.sum(num*num) / denom
  return flex.sum(num*den) / denom
示例#25
0
def poly_residual(xp, y, params):
  '''Compute the residual between the observations y[i] and sum_j
  params[j] x[i]^j. For efficiency, x[i]^j are pre-calculated in xp.'''

  r = 0.0

  n = len(params)
  c = len(y)

  e = flex.double([flex.sum(xp[j] * params) for j in range(c)])

  return flex.sum(flex.pow2(y - e))
示例#26
0
def _scale_helper(num, den, selection=None, num_num=False):
    from cctbx.array_family import flex
    if (selection is not None):
        num = num.select(selection)
        den = den.select(selection)
    if (den.size() == 0):
        raise RuntimeError("No data for scale calculation.")
    denom = flex.sum(den * den)
    if (denom == 0):
        raise RuntimeError("Zero denominator in scale calculation.")
    if (num_num): return flex.sum(num * num) / denom
    return flex.sum(num * den) / denom
示例#27
0
def algorithm_4(f_obs,
                F,
                phase_source,
                max_cycles=100,
                auto_converge_eps=1.e-7,
                use_cpp=True):
    """
  Phased simultaneous search (alg4)
  """
    fc, f_masks = F[0], F[1:]
    fc = fc.deep_copy()
    F = [fc] + F[1:]
    # C++ version
    if (use_cpp):
        return mosaic_ext.alg4([f.data() for f in F], f_obs.data(),
                               phase_source.data(), max_cycles,
                               auto_converge_eps)
    # Python version (1.2-3 times slower, but much more readable!)
    cntr = 0
    x_prev = None
    while True:
        f_obs_cmpl = f_obs.phase_transfer(phase_source=phase_source)
        A = []
        b = []
        for j, Fj in enumerate(F):
            A_rows = []
            for n, Fn in enumerate(F):
                Gjn = flex.real(Fj.data() * flex.conj(Fn.data()))
                A_rows.append(flex.sum(Gjn))
            Hj = flex.real(Fj.data() * flex.conj(f_obs_cmpl.data()))
            b.append(flex.sum(Hj))
            A.extend(A_rows)
        A = matrix.sqr(A)
        A_1 = A.inverse()
        b = matrix.col(b)
        x = A_1 * b
        #
        fc_d = flex.complex_double(phase_source.indices().size(), 0)
        for i, f in enumerate(F):
            fc_d += f.data() * x[i]
        phase_source = phase_source.customized_copy(data=fc_d)
        x_ = x[:]
        #
        cntr += 1
        if (cntr > max_cycles): break
        if (x_prev is None): x_prev = x_[:]
        else:
            max_diff = flex.max(
                flex.abs(flex.double(x_prev) - flex.double(x_)))
            if (max_diff <= auto_converge_eps): break
            x_prev = x_[:]
    return x_
示例#28
0
 def aniso_ratio_p_value(self,rat):
   return -3
   coefs = flex.double( [-1.7647171873040273, -3.4427008004789115,
     -1.097150249786379, 0.17303317520973829, 0.35955513268118661,
     0.066276397961476205, -0.064575726062529232, -0.0063025873711609016,
     0.0749945566688624, 0.14803702885155121, 0.154284467861286])
   fit_e = scitbx.math.chebyshev_polynome(11,0,1.0,coefs)
   x = flex.double( range(1000) )/999.0
   start = int(rat*1000)
   norma = flex.sum(flex.exp(fit_e.f(x)))/x[1]
   x = x*(1-rat)+rat
   norma2 = flex.sum(flex.exp(fit_e.f(x)))/(x[1]-x[0])
   return -math.log(norma2/norma )
示例#29
0
 def aniso_ratio_p_value(self,rat):
   return -3
   coefs = flex.double( [-1.7647171873040273, -3.4427008004789115,
     -1.097150249786379, 0.17303317520973829, 0.35955513268118661,
     0.066276397961476205, -0.064575726062529232, -0.0063025873711609016,
     0.0749945566688624, 0.14803702885155121, 0.154284467861286])
   fit_e = scitbx.math.chebyshev_polynome(11,0,1.0,coefs)
   x = flex.double( range(1000) )/999.0
   start = int(rat*1000)
   norma = flex.sum(flex.exp(fit_e.f(x)))/x[1]
   x = x*(1-rat)+rat
   norma2 = flex.sum(flex.exp(fit_e.f(x)))/(x[1]-x[0])
   return -math.log(norma2/norma )
示例#30
0
def linear_fit(x,y,s): # Standard least square fitting
  var = s*s
  sum_x2 = flex.sum( x*x/var )
  #sum_y2 = flex.sum( y*y/var )
  sum_xy = flex.sum( x*y/var )
  sum_x  = flex.sum( x / var )
  sum_y  = flex.sum( y / var )
  N = x.size()
  sum_inv_var = flex.sum(1.0/var)
  det = sum_inv_var * sum_x2 - sum_x * sum_x
  scale = (sum_inv_var * sum_xy - sum_x*sum_y ) / det
  offset = (sum_x2*sum_y - sum_x * sum_xy) /det

  return scale, offset
示例#31
0
 def f_obs(self):
     fo2 = self.fo2.as_intensity_array()
     f_obs = fo2.as_amplitude_array()
     if self.use_set_completion:
         if self._f_mask is not None:
             f_model = self.f_model()
         else:
             f_model = self.f_calc
         data_substitute = flex.abs(f_model.data())
         scale_factor = flex.sum(f_obs.data()) / flex.sum(f_model.common_set(f_obs).as_amplitude_array().data())
         f_obs = f_obs.matching_set(
             other=self.complete_set, data_substitute=scale_factor * flex.abs(f_model.data()), sigmas_substitute=0
         )
     return f_obs
def exercise(prefix="tst_helix_sheet_recs_as_pdb_files"):
  of = open(prefix+".pdb", "w")
  print >> of, pdb_str
  of.close()
  xrs1 = iotbx.pdb.input(file_name=prefix+".pdb").xray_structure_simple()
  easy_run.call("phenix.helix_sheet_recs_as_pdb_files %s"%(prefix+".pdb"))
  xrs2 = iotbx.pdb.input(
    file_name="HELIX_1_1_ALA_E_1_ALA_E_16_1_16.pdb").xray_structure_simple(crystal_symmetry=xrs1.crystal_symmetry())
  fc1 = xrs1.structure_factors(d_min=3).f_calc()
  fc2 = fc1.structure_factors_from_scatterers(
    xray_structure=xrs2).f_calc()
  fc1=flex.abs(abs(fc1).data())
  fc2=flex.abs(abs(fc2).data())
  assert flex.sum(flex.abs(fc1-fc2))/flex.sum(flex.abs(fc1+fc2)) < 1.e-3
示例#33
0
  def method2_include_pehHKL_I_explicitly():
   # There's no reason why we can't get the Gi's by analytical least squares
   for key in G.images_strong:
    numerator = 0.; denominator = 0.
    nkeys = len(G.images_strong[key])

    for ikey, HKL in enumerate(G.images_strong[key]):
      MD = G.images_strong[key][HKL]
      terms1 = G.images_strong[key][HKL]["model"] # it's already in the model: * per_HKL_I[HKL]
      terms2 = terms1 * terms1
      terms0 = G.images_strong[key][HKL]["obs"] * terms1
      numerator+=flex.sum(terms0)
      denominator+=flex.sum(terms2)
    G.images_Gi[key]=numerator/denominator
    if key%100==0: print (key, "Gi:", G.images_Gi[key])
示例#34
0
  def __init__(self,
        f_obs,
        r_free_flags,
        xray_structure,
        f_calc,
        target_memory):
    self.f_obs = f_obs
    self.r_free_flags = r_free_flags
    self.xray_structure = xray_structure
    self.f_calc = f_calc
    if (target_memory is None): # XXX could be more elegant!
      den = self.f_obs.data()
      num = flex.abs(self.f_calc.data())
      denom = flex.sum(num*den)
      numerator = flex.sum(den*den)
      if (denom == 0):
        raise RuntimeError("Zero denominator in scale calculation.")
      previous_overall_scaleK = numerator/denom
      previous_overall_scaleU = 0.
      previous_variances = None
      adaptor = phaser.phenix_adaptors.sad_target.data_adaptor(
        f_obs=f_obs,
        r_free_flags=r_free_flags,
        verbose=True)
      self.refine_sad_object = adaptor.target(
        xray_structure=xray_structure,
        previous_overall_scaleK=previous_overall_scaleK,
        previous_overall_scaleU=previous_overall_scaleU,
        previous_variances=previous_variances)
      self.refine_sad_object.set_f_calc(f_calc=f_calc)
      target_memory = self.target_memory()

    assert len(target_memory) == 4
    assert target_memory[0] == "ml_sad"
    previous_overall_scaleK = target_memory[1]
    previous_overall_scaleU = target_memory[2]
    previous_variances = target_memory[3]
    adaptor = phaser.phenix_adaptors.sad_target.data_adaptor(
      f_obs=f_obs,
      r_free_flags=r_free_flags,
      verbose=True)
    self.refine_sad_object = adaptor.target(
      xray_structure=xray_structure,
      previous_overall_scaleK=previous_overall_scaleK,
      previous_overall_scaleU=previous_overall_scaleU,
      previous_variances=previous_variances)
    self.refine_sad_object.set_f_calc(f_calc=f_calc)
    self.refine_sad_object.reject_outliers()
示例#35
0
  def __init__(self,
        f_obs,
        r_free_flags,
        xray_structure,
        f_calc,
        target_memory):
    self.f_obs = f_obs
    self.r_free_flags = r_free_flags
    self.xray_structure = xray_structure
    self.f_calc = f_calc
    if (target_memory is None): # XXX could be more elegant!
      den = self.f_obs.data()
      num = flex.abs(self.f_calc.data())
      denom = flex.sum(num*den)
      numerator = flex.sum(den*den)
      if (denom == 0):
        raise RuntimeError("Zero denominator in scale calculation.")
      previous_overall_scaleK = numerator/denom
      previous_overall_scaleU = 0.
      previous_variances = None
      adaptor = phaser.phenix_adaptors.sad_target.data_adaptor(
        f_obs=f_obs,
        r_free_flags=r_free_flags,
        verbose=True)
      self.refine_sad_object = adaptor.target(
        xray_structure=xray_structure,
        previous_overall_scaleK=previous_overall_scaleK,
        previous_overall_scaleU=previous_overall_scaleU,
        previous_variances=previous_variances)
      self.refine_sad_object.set_f_calc(f_calc=f_calc)
      target_memory = self.target_memory()

    assert len(target_memory) == 4
    assert target_memory[0] == "ml_sad"
    previous_overall_scaleK = target_memory[1]
    previous_overall_scaleU = target_memory[2]
    previous_variances = target_memory[3]
    adaptor = phaser.phenix_adaptors.sad_target.data_adaptor(
      f_obs=f_obs,
      r_free_flags=r_free_flags,
      verbose=True)
    self.refine_sad_object = adaptor.target(
      xray_structure=xray_structure,
      previous_overall_scaleK=previous_overall_scaleK,
      previous_overall_scaleU=previous_overall_scaleU,
      previous_variances=previous_variances)
    self.refine_sad_object.set_f_calc(f_calc=f_calc)
    self.refine_sad_object.reject_outliers()
示例#36
0
 def update_target_and_grads(self, x):
     self.x = x
     s = 1  #180/math.pi
     i_model = flex.double(self.i_obs.data().size(), 0)
     for n, kn in enumerate(self.x):
         for m, km in enumerate(self.x):
             tmp = self.F[n].data() * flex.conj(self.F[m].data())
             i_model += kn * km * flex.real(tmp)
             #pn = self.F[n].phases().data()*s
             #pm = self.F[m].phases().data()*s
             #Fn = flex.abs(self.F[n].data())
             #Fm = flex.abs(self.F[m].data())
             #i_model += kn*km*Fn*Fm*flex.cos(pn-pm)
     diff = i_model - self.i_obs.data()
     t = flex.sum(diff * diff) / 4
     #
     g = flex.double()
     for j in range(len(self.F)):
         tmp = flex.double(self.i_obs.data().size(), 0)
         for m, km in enumerate(self.x):
             tmp += km * flex.real(
                 self.F[j].data() * flex.conj(self.F[m].data()))
             #pj = self.F[j].phases().data()*s
             #pm = self.F[m].phases().data()*s
             #Fj = flex.abs(self.F[j].data())
             #Fm = flex.abs(self.F[m].data())
             #tmp += km * Fj*Fm*flex.cos(pj-pm)
         g.append(flex.sum(diff * tmp))
     self.t = t
     self.g = g
     #
     if self.use_curvatures:
         d = flex.double()
         for j in range(len(self.F)):
             tmp1 = flex.double(self.i_obs.data().size(), 0)
             tmp2 = flex.double(self.i_obs.data().size(), 0)
             for m, km in enumerate(self.x):
                 zz = flex.real(self.F[j].data() *
                                flex.conj(self.F[m].data()))
                 tmp1 += km * zz
                 tmp2 += zz
                 #pj = self.F[j].phases().data()*s
                 #pm = self.F[m].phases().data()*s
                 #Fj = flex.abs(self.F[j].data())
                 #Fm = flex.abs(self.F[m].data())
                 #tmp += km * Fj*Fm*flex.cos(pj-pm)
             d.append(flex.sum(tmp1 * tmp1 + tmp2))
         self.d = d
示例#37
0
def show_overall_observations(obs, redundancy, I, I_SIGI, out=None):
    if out == None:
        import sys
        out = sys.stdout
    from libtbx.str_utils import format_value

    obs.setup_binner(n_bins=15)
    result = []
    for i_bin in obs.binner().range_used():
        sel_w = obs.binner().selection(i_bin)
        sel_fo_all = obs.select(sel_w)
        d_max_, d_min_ = sel_fo_all.d_max_min()
        d_range = obs.binner().bin_legend(i_bin=i_bin,
                                          show_bin_number=False,
                                          show_counts=False)
        sel_redundancy = redundancy.select(sel_w)
        sel_absent = sel_redundancy.count(0)
        sel_complete_tag = "[%d/%d]" % (sel_redundancy.size() - sel_absent,
                                        sel_redundancy.size())
        sel_measurements = flex.sum(sel_redundancy)
        sel_data = I.select(sel_w)
        sel_sig = I_SIGI.select(sel_w)
        if (sel_data.size() > 0 and sel_measurements > 0):
            bin = resolution_bin(
                i_bin=i_bin,
                d_range=d_range,
                redundancy=flex.mean(sel_redundancy.as_double()),
                complete_tag=sel_complete_tag,
                measurements=sel_measurements,
                mean_I=flex.sum(sel_data) / sel_measurements,
                mean_I_sigI=flex.sum(sel_sig) / sel_measurements,
            )
            result.append(bin)
    print(
        "\n Bin  Resolution Range      Compl. <Redundancy>  #Measurements  <I>     <I/sig(I)>",
        file=out)
    for bin in result:
        fmt = " %s %s %s %s       %s      %s   %s"
        print(fmt % (
            format_value("%3d", bin.i_bin),
            format_value("%-13s", bin.d_range),
            format_value("%13s", bin.complete_tag),
            format_value("%4.0f", bin.redundancy),
            format_value("%8d", bin.measurements),
            format_value("%8.1f", bin.mean_I),
            format_value("%8.1f", bin.mean_I_sigI),
        ),
              file=out)
示例#38
0
 def log_p_obs_given_gamma(self, gamma):
   dof = self.degrees_of_freedom
   x_gamma = (gamma * self.delta_fc2.data() - self.delta_fo2.data()) \
           / self.delta_fo2.sigmas()
   if self.probability_plot_slope is not None:
     x_gamma /= self.probability_plot_slope
   return -(1+dof)/2 * flex.sum(flex.log(flex.pow2(x_gamma) + dof))
def map_stat(distances, map_values):
  result = []
  #
  n_points_max = -1
  nn=20
  x = [[i/100,i/100+nn/100.] for i in range(0,800, nn)]
  for x_ in x:
    l,r = x_
    sel  = distances >= l
    sel &= distances < r
    mv = map_values.select(sel)
    if(mv.size()>n_points_max): n_points_max = mv.size()
  #
  for x_ in x:
    l,r = x_
    sel  = distances >= l
    sel &= distances < r
    mv = map_values.select(sel)
    if(mv.size()>0):
      sz = mv.size()
      rms = math.sqrt( flex.sum(mv*mv)/sz )
      #fr = sz*100./map_values.size()
      fr = sz*1./n_points_max
      result.append([l, r, flex.mean(mv), rms, sz, fr])
  return result
示例#40
0
 def compute_functional(self):
   top = self.diff1 - self.diff2*self.x[0]
   top= top*top
   bottom = self.v1+self.v2*self.x[0]*self.x[0]
   result = top/bottom
   result=flex.sum(result)
   return result
示例#41
0
 def compute_chi_sq(fo_sq, fc_sq, a,b):
   weighting.a = a
   weighting.b = b
   weights = weighting(
     fo_sq.data(), fo_sq.sigmas(), fc_sq.data(), scale_factor)
   return (flex.sum(
     weights * flex.pow2(fo_sq.data() - scale_factor * fc_sq.data())))
示例#42
0
def set_refinable_parameters(xray_structure, parameters, selections,
                             enforce_positivity=False):
  # XXX PVA: Code below is terribly inefficient and MUST be moved into C++
  sz = xray_structure.scatterers().size()
  i = 0
  for sel in selections:
    # pre-check for positivity begin
    # spread negative occupancies across i_seqs having positive ones
    par_all = flex.double()
    par_neg = flex.double()
    i_p = i
    for sel_ in sel:
      p = parameters[i_p]
      par_all.append(p)
      if(p<0): par_neg.append(p)
      i_p += 1
    if(enforce_positivity and par_neg.size()>0):
      par_all = par_all - flex.min(par_all)
      fs = flex.sum(par_all)
      if(fs != 0):
        par_all = par_all / fs
    # pre-check for positivity end
    for j, sel_ in enumerate(sel):
      sel__b = flex.bool(sz, flex.size_t(sel_))
      xray_structure.set_occupancies(par_all[j], sel__b)
      i+=1
示例#43
0
  def compute_functional_and_gradients(self):
    coord_x = self.x[0:self.NN]
    coord_y = self.x[self.NN:2*self.NN]

    inner = self.rij_matrix - coord_x.matrix_outer_product(coord_x) - coord_y.matrix_outer_product(coord_y)
    elements = self.wij_matrix*inner*inner
    f = 0.5 * flex.sum(elements)

    # quick gradients
    wrij_matrix = self.wij_matrix * self.rij_matrix
    term_1 = wrij_matrix.matrix_multiply(coord_x).concatenate(wrij_matrix.matrix_multiply(coord_y))
    temp_2 = self.wij_matrix * (coord_x.matrix_outer_product(coord_x))
    term_2x = (temp_2).matrix_multiply(coord_x)
    term_2y = (temp_2).matrix_multiply(coord_y)
    temp_3 = self.wij_matrix * (coord_y.matrix_outer_product(coord_y))
    term_3x = (temp_3).matrix_multiply(coord_x)
    term_3y = (temp_3).matrix_multiply(coord_y)
    term_2 = term_2x.concatenate(term_2y)
    term_3 = term_3x.concatenate(term_3y)
    grad = -2.* ( term_1 - term_2 - term_3 )

    if self.verbose: print "Functional",f
    #from matplotlib import pyplot as plt
    #plt.plot(coord_x,coord_y,"r.")
    #plt.axes().set_aspect("equal")
    #plt.show()
    return f,grad
  def vectors(self):
    self.database.initialize_tables_and_insert_command()

    self.tile_rmsd = [0.]*64

    for run,tokens in self.literals():
     try:
      itile = self.register_line( float(tokens[2]),float(tokens[3]),
                       float(tokens[5]),float(tokens[6]),
                       float(tokens[8]),float(tokens[9]),
                       float(tokens[11]),float(tokens[12]) )
      if run is not None:
        self.database.insert(run,itile,tokens)
      yield "OK"
     except ValueError:
       print "Valueerror"

    self.database.send_insert_command()
    for x in xrange(64):
      if self.tilecounts[x]==0: continue
      self.radii[x]/=self.tilecounts[x]
      sum_cv = matrix.col(self.mean_cv[x])
      self.mean_cv[x] = sum_cv/self.tilecounts[x]
      mean_cv = matrix.col(self.mean_cv[x])
      selection = (self.master_tiles == x)
      selected_cv = self.master_cv.select(selection)
      if len(selected_cv)>0:
        self.tile_rmsd[x] = math.sqrt(
      flex.mean(flex.double([ (matrix.col(cv) - mean_cv).length_sq() for cv in selected_cv ]))
      )
      else: self.tile_rmsd[x]=0.
    self.overall_N = flex.sum(flex.int( [int(t) for t in self.tilecounts] ))
    self.overall_cv = matrix.col(self.overall_cv)/self.overall_N
    self.overall_rmsd = math.sqrt( self.sum_sq_cv / self.overall_N )
示例#45
0
 def __init__(
       self,
       target_functor,
       selections,
       refine_adp,
       refine_occ,
       compute_gradients=True,
       rtg=None,
       weight=None):
   assert [refine_adp, refine_occ].count(True) == 1
   t_r = target_functor(compute_gradients=compute_gradients)
   self.f = t_r.target_work()
   if(rtg is not None): self.f = self.f*weight+rtg.residual_sum
   if(compute_gradients):
     target_grads_wrt_par = t_r.gradients_wrt_atomic_parameters(
       u_iso     = refine_adp,
       occupancy = refine_occ)
     if(rtg is not None):
       target_grads_wrt_par = target_grads_wrt_par*weight+rtg.gradients
     self.grads_wrt_par = []
     for sel in selections:
       target_grads_wrt_par_sel = target_grads_wrt_par.select(sel)
       self.grads_wrt_par.append(flex.sum(target_grads_wrt_par_sel))
   else:
     self.grads_wrt_par = None
示例#46
0
 def compute_gradient(self):
   tmp_bottom = self.v1+self.v2*self.x[0]*self.x[0]
   tmp_top = self.diff1 - self.diff2*self.x[0]
   part1 = -2.0*self.x[0]*tmp_top*tmp_top*self.v2/( tmp_bottom*tmp_bottom )
   part2 = -2.0*self.diff2*tmp_top/tmp_bottom
   result=flex.sum( part1+part2)
   return(flex.double([result]))
示例#47
0
 def compute_chi_sq(fo_sq, fc_sq, a,b):
   weighting.a = a
   weighting.b = b
   weights = weighting(
     fo_sq.data(), fo_sq.sigmas(), fc_sq.data(), scale_factor)
   return (flex.sum(
     weights * flex.pow2(fo_sq.data() - scale_factor * fc_sq.data())))
def show_terms(structure, term_table, coseq_dict=None):
  assert len(term_table) == structure.scatterers().size()
  for scatterer,terms in zip(structure.scatterers(), term_table):
    print scatterer.label, list(terms),
    if (coseq_dict is not None):
      terms_to_match = list(terms[1:])
      have_match = False
      tags = coseq_dict.keys()
      tags.sort()
      for tag in tags:
        for coseq_terms in coseq_dict[tag]:
          n = min(len(coseq_terms), len(terms_to_match))
          if (coseq_terms[:n] == terms_to_match[:n]):
            print tag,
            have_match = True
      if (not have_match):
        print "Unknown",
    print
  sums_terms = flex.double()
  multiplicities = flex.double()
  for scatterer,terms in zip(structure.scatterers(), term_table):
    sums_terms.append(flex.sum(flex.size_t(list(terms))))
    multiplicities.append(scatterer.multiplicity())
  print "TD%d: %.2f" % (
    len(terms)-1, flex.mean_weighted(sums_terms, multiplicities))
示例#49
0
    def compute_functional(self, x):
        """Compute the target function at coordinates `x`.

        Args:
          x (scitbx.array_family.flex.double):
            a flattened list of the N-dimensional vectors, i.e. coordinates in
            the first dimension are stored first, followed by the coordinates in
            the second dimension, etc.

        Returns:
          f (float): The value of the target function at coordinates `x`.

        """
        assert (x.size() // self.dim) == (self._lattices.size() *
                                          len(self._sym_ops))
        inner = self.rij_matrix.deep_copy()
        NN = x.size() // self.dim
        for i in range(self.dim):
            coord = x[i * NN:(i + 1) * NN]
            outer_prod = coord.matrix_outer_product(coord)
            inner -= outer_prod
        elements = inner * inner
        if self.wij_matrix is not None:
            elements = self.wij_matrix * elements
        f = 0.5 * flex.sum(elements)
        return f
示例#50
0
 def compute_functional(self):
     top = self.diff1 - self.diff2 * self.x[0]
     top = top * top
     bottom = self.v1 + self.v2 * self.x[0] * self.x[0]
     result = top / bottom
     result = flex.sum(result)
     return result
    def compute_functional_and_gradients(self):
        coord_x = self.x[0:self.NN]
        coord_y = self.x[self.NN:2 * self.NN]

        inner = self.rij_matrix - coord_x.matrix_outer_product(
            coord_x) - coord_y.matrix_outer_product(coord_y)
        elements = self.wij_matrix * inner * inner
        f = 0.5 * flex.sum(elements)

        # quick gradients
        wrij_matrix = self.wij_matrix * self.rij_matrix
        term_1 = wrij_matrix.matrix_multiply(coord_x).concatenate(
            wrij_matrix.matrix_multiply(coord_y))
        temp_2 = self.wij_matrix * (coord_x.matrix_outer_product(coord_x))
        term_2x = (temp_2).matrix_multiply(coord_x)
        term_2y = (temp_2).matrix_multiply(coord_y)
        temp_3 = self.wij_matrix * (coord_y.matrix_outer_product(coord_y))
        term_3x = (temp_3).matrix_multiply(coord_x)
        term_3y = (temp_3).matrix_multiply(coord_y)
        term_2 = term_2x.concatenate(term_2y)
        term_3 = term_3x.concatenate(term_3y)
        grad = -2. * (term_1 - term_2 - term_3)

        if self.verbose: print "Functional", f
        #from matplotlib import pyplot as plt
        #plt.plot(coord_x,coord_y,"r.")
        #plt.axes().set_aspect("equal")
        #plt.show()
        return f, grad
示例#52
0
 def f(self, x):
     print x
     B = float(x[0])
     #d_star_sq = self.calc.d_star_sq().data()
     #obs = self.obs.data()
     #calc = flex.exp(-B*d_star_sq)*self.calc.data()
     k = self.get_linear_scale(self.obs, self.calc, B)
     return flex.sum(flex.pow2(self.obs.data() - k*self.calc.data()))
示例#53
0
 def ca(self, x):
   if(x is None):           return str(0)
   elif(self.is_bool(x)):   return str(x.count(True))
   elif(self.is_size_t(x)): return str(x.size())
   elif(len(x)==0):         return str(0)
   elif(self.is_size_t(x[0])):
     return str(flex.sum(flex.size_t([i.size() for i in x])))
   else: raise RuntimeError("Bad selection array type.")
示例#54
0
 def compute_functional_and_gradients(self):
   lp_h = lbfgs_target_handler()
   #calculate sum_sqr of the function
   fvec = lp_h.func(self.x, self.args)
   self.f = flex.sum(fvec*fvec)
   #calculate gradient for each parameter
   DELTA = 1.E-7
   self.g = flex.double()
   for x in xrange(self.n):
     templist = list(self.x)
     templist[x]+=DELTA
     dvalues = flex.double(templist)
     dfvec = lp_h.func(dvalues, self.args)
     df = flex.sum(dfvec*dfvec)
     #calculate by finite_difference
     self.g.append( ( df-self.f )/DELTA )
   return self.f, self.g
示例#55
0
 def compute_structure_factors(self):
   """ Compute the structure factors self._g of self.rho_map,
   as well as the 000 component self._g_000, scaling them by the number of
   grid points """
   rho = self.rho_map.real_map()
   self._g_000 = flex.sum(rho) * self.fft_scale
   self._g = self.f_obs.structure_factors_from_map(rho, in_place_fft=True)
   self._g *= self.fft_scale