示例#1
0
def g1(x, kimax=None, kjmax=None, cross=True):
    i, j = np.meshgrid(ifreq, jfreq, indexing="ij")

    x = np.asarray(x)

    #add dimensions for broadcasting
    x = x[..., None, None]

    #expected signal
    a = NUM_PARTICLES * formf**2 * AREA_RATIO
    #expected variance (signal + noise)
    if APPLY_DUST:
        if cross:
            v = a + noise_level(
                (window * dust1 + window * dust2) / 2, BACKGROUND
            )  #expected abs FFT squared of gaussian noise with std of BACKGROUND**0.5
        else:
            v = a + noise_level(
                window * dust1, BACKGROUND
            )  #expected abs FFT squared of gaussian noise with std of BACKGROUND**0.5

    else:
        v = a + noise_level(
            window, BACKGROUND
        )  #expected abs FFT squared of gaussian noise with std of BACKGROUND**0.5

    #expected scalling factor
    a = a / v

    a = rfft2_crop(a, kimax, kjmax)
    i = rfft2_crop(i, kimax, kjmax)
    j = rfft2_crop(j, kimax, kjmax)

    return a * np.exp(-D * (i**2 + j**2) * x)
示例#2
0
def fvar(i, j):
    #expected signal
    a = NUM_PARTICLES * formf[i, j]**2 * AREA_RATIO
    if CROSS:
        v = a + noise_level(
            (window * video_simulator.dust1 + window * video_simulator.dust2) /
            2, BACKGROUND
        )  #expected abs FFT squared of gaussian noise with std of BACKGROUND**0.5
    else:
        v = a + noise_level(
            window * video_simulator.dust1, BACKGROUND
        )  #expected abs FFT squared of gaussian noise with std of BACKGROUND**0.5
    #v = a + noise_level(window,BACKGROUND)#expected abs FFT squared of gaussian noise with std of BACKGROUND**0.5

    return v / (ADC_SCALE_FACTOR**2)
示例#3
0
def g1(x, i, j):
    #expected signal
    a = NUM_PARTICLES * formf[i, j]**2 * AREA_RATIO
    #expected variance (signal + noise)
    if CROSS:
        v = a + noise_level(
            (window * video_simulator.dust1 + window * video_simulator.dust2) /
            2, BACKGROUND
        )  #expected abs FFT squared of gaussian noise with std of BACKGROUND**0.5
    else:
        v = a + noise_level(
            window * video_simulator.dust1, BACKGROUND
        )  #expected abs FFT squared of gaussian noise with std of BACKGROUND**0.5

    #v = a + noise_level(window,BACKGROUND) #expected abs FFT squared of gaussian noise with std of BACKGROUND**0.5

    #expected scalling factor
    a = a / v
    return a * np.exp(-D * (i**2 + j**2) * x)
示例#4
0
def fvar(kimax=None, kjmax=None, cross=True):
    #expected signal
    a = NUM_PARTICLES * formf**2 * AREA_RATIO
    if APPLY_DUST:
        if cross:
            v = a + noise_level(
                (window * dust1 + window * dust2) / 2, BACKGROUND
            )  #expected abs FFT squared of gaussian noise with std of BACKGROUND**0.5
        else:
            v = a + noise_level(
                window * dust1, BACKGROUND
            )  #expected abs FFT squared of gaussian noise with std of BACKGROUND**0.5
    else:
        v = a + noise_level(
            window, BACKGROUND
        )  #expected abs FFT squared of gaussian noise with std of BACKGROUND**0.5

    v = v / (ADC_SCALE_FACTOR**2)
    return rfft2_crop(v, kimax, kjmax)
示例#5
0
def fdelta(i, j):
    a = NUM_PARTICLES * formf[i, j]**2 * AREA_RATIO
    n = noise_level(
        window, BACKGROUND
    )  #expected abs FFT squared of gaussian noise with std of BACKGROUND**0.5
    return n / (a + n)