def test_gdmp2(self): g = get_string_graph() com = algorithms.gdmp2(g, min_threshold=.75) self.assertEqual(type(com.communities), list) if len(com.communities) > 0: self.assertEqual(type(com.communities[0]), list) self.assertEqual(type(com.communities[0][0]), str)
print(g.number_of_nodes()) print(g.number_of_edges()) if (options.method == 'leiden'): communities = algorithms.leiden(g, weights='weight', **clust_kwargs) elif (options.method == 'louvain'): communities = algorithms.louvain(g, weight='weight', **clust_kwargs) elif (options.method == 'cpm'): communities = algorithms.cpm(g, weights='weight', **clust_kwargs) elif (options.method == 'der'): communities = algorithms.der(g, **clust_kwargs) elif (options.method == 'edmot'): communities = algorithms.edmot(g, **clust_kwargs) elif (options.method == 'eigenvector'): communities = algorithms.eigenvector(g, **clust_kwargs) elif (options.method == 'gdmp2'): communities = algorithms.gdmp2(g, **clust_kwargs) elif (options.method == 'greedy_modularity'): communities = algorithms.greedy_modularity(g, weight='weight', **clust_kwargs) #elif(options.method == 'infomap'): # communities = algorithms.infomap(g) elif (options.method == 'label_propagation'): communities = algorithms.label_propagation(g, **clust_kwargs) elif (options.method == 'markov_clustering'): communities = algorithms.markov_clustering(g, **clust_kwargs) elif (options.method == 'rber_pots'): communities = algorithms.rber_pots(g, weights='weight', **clust_kwargs) elif (options.method == 'rb_pots'): communities = algorithms.rb_pots(g, weights='weight', **clust_kwargs) elif (options.method == 'significance_communities'):