def applyRadiationDamageBiDir(data, nt_p, sigma_p, taur_p, nt_s, sigma_s, taur_s, iquadrant=0, rdose=1.6e10):
    """

    :return: image that has been run through the CDM03 model
    :rtype: ndarray
    """

    #read in trap information
    CTIed = cdm03bidir.cdm03(data,
                        iquadrant%2, iquadrant/2,
                        0.0, rdose,
                        nt_p, sigma_p, taur_p,
                        nt_s, sigma_s, taur_s,
                        [data.shape[0], data.shape[1], len(nt_p), len(nt_p)])
    return np.asanyarray(CTIed)
示例#2
0
    def applyRadiationDamage(self, data, iquadrant=0):
        """
        Apply radian damage based on FORTRAN CDM03 model. The method assumes that
        input data covers only a single quadrant defined by the iquadrant integer.

        :param data: imaging data to which the CDM03 model will be applied to.
        :type data: ndarray

        :param iquandrant: number of the quadrant to process
        :type iquandrant: int

        cdm03 - Function signature::

              sout = cdm03(sinp,iflip,jflip,dob,rdose,in_nt,in_sigma,in_tr,[xdim,ydim,zdim])
            Required arguments:
              sinp : input rank-2 array('d') with bounds (xdim,ydim)
              iflip : input int
              jflip : input int
              dob : input float
              rdose : input float
              in_nt : input rank-1 array('d') with bounds (zdim)
              in_sigma : input rank-1 array('d') with bounds (zdim)
              in_tr : input rank-1 array('d') with bounds (zdim)
            Optional arguments:
              xdim := shape(sinp,0) input int
              ydim := shape(sinp,1) input int
              zdim := len(in_nt) input int
            Return objects:
              sout : rank-2 array('d') with bounds (xdim,ydim)

        .. Note:: Because Python/NumPy arrays are different row/column based, one needs
                  to be extra careful here. NumPy.asfortranarray will be called to get
                  an array laid out in Fortran order in memory. Before returning the
                  array will be laid out in memory in C-style (row-major order).

        :return: image that has been run through the CDM03 model
        :rtype: ndarray
        """ ""
        iflip = iquadrant / 2
        jflip = iquadrant % 2

        params = [
            self.params['beta_p'], self.params['beta_s'], self.params['fwc'],
            self.params['vth'], self.params['vg'], self.params['t'],
            self.params['sfwc'], self.params['svg'], self.params['st'],
            self.params['parallel'], self.params['serial']
        ]

        if self.logger:
            self.log.info('nt_p=' + str(self.nt_p))
            self.log.info('nt_s=' + str(self.nt_s))
            self.log.info('sigma_p= ' + str(self.sigma_p))
            self.log.info('sigma_s= ' + str(self.sigma_s))
            self.log.info('taur_p= ' + str(self.taur_p))
            self.log.info('taur_s= ' + str(self.taur_s))
            self.log.info('dob=%f' % self.values['dob'])
            self.log.info('rdose=%e' % self.values['rdose'])
            self.log.info('xsize=%i' % data.shape[1])
            self.log.info('ysize=%i' % data.shape[0])
            self.log.info('quadrant=%i' % iquadrant)
            self.log.info('iflip=%i' % iflip)
            self.log.info('jflip=%i' % jflip)

        CTIed = cdm03bidir.cdm03(np.asfortranarray(data), jflip, iflip,
                                 self.values['dob'], self.values['rdose'],
                                 self.nt_p, self.sigma_p, self.taur_p,
                                 self.nt_s, self.sigma_s, self.taur_s, params,
                                 [
                                     data.shape[0], data.shape[1],
                                     len(self.nt_p),
                                     len(self.nt_s),
                                     len(self.params)
                                 ])
        return np.asanyarray(CTIed)
示例#3
0
    def applyRadiationDamage(self, data, iquadrant=0):
        """
        Apply radian damage based on FORTRAN CDM03 model. The method assumes that
        input data covers only a single quadrant defined by the iquadrant integer.

        :param data: imaging data to which the CDM03 model will be applied to.
        :type data: ndarray

        :param iquandrant: number of the quadrant to process
        :type iquandrant: int

        cdm03 - Function signature::

              sout = cdm03(sinp,iflip,jflip,dob,rdose,in_nt,in_sigma,in_tr,[xdim,ydim,zdim])
            Required arguments:
              sinp : input rank-2 array('d') with bounds (xdim,ydim)
              iflip : input int
              jflip : input int
              dob : input float
              rdose : input float
              in_nt : input rank-1 array('d') with bounds (zdim)
              in_sigma : input rank-1 array('d') with bounds (zdim)
              in_tr : input rank-1 array('d') with bounds (zdim)
            Optional arguments:
              xdim := shape(sinp,0) input int
              ydim := shape(sinp,1) input int
              zdim := len(in_nt) input int
            Return objects:
              sout : rank-2 array('d') with bounds (xdim,ydim)

        .. Note:: Because Python/NumPy arrays are different row/column based, one needs
                  to be extra careful here. NumPy.asfortranarray will be called to get
                  an array laid out in Fortran order in memory. Before returning the
                  array will be laid out in memory in C-style (row-major order).

        :return: image that has been run through the CDM03 model
        :rtype: ndarray
        """""
        iflip = iquadrant / 2
        jflip = iquadrant % 2

        params = [self.params['beta_p'], self.params['beta_s'], self.params['fwc'], self.params['vth'],
                  self.params['vg'], self.params['t'], self.params['sfwc'], self.params['svg'], self.params['st'],
                  self.params['parallel'], self.params['serial']]

        if self.logger:
            self.log.info('nt_p=' + str(self.nt_p))
            self.log.info('nt_s=' + str(self.nt_s))
            self.log.info('sigma_p= ' + str(self.sigma_p))
            self.log.info('sigma_s= ' + str(self.sigma_s))
            self.log.info('taur_p= ' + str(self.taur_p))
            self.log.info('taur_s= ' + str(self.taur_s))
            self.log.info('dob=%f' % self.values['dob'])
            self.log.info('rdose=%e' % self.values['rdose'])
            self.log.info('xsize=%i' % data.shape[1])
            self.log.info('ysize=%i' % data.shape[0])
            self.log.info('quadrant=%i' % iquadrant)
            self.log.info('iflip=%i' % iflip)
            self.log.info('jflip=%i' % jflip)

        CTIed = cdm03bidir.cdm03(np.asfortranarray(data),
                                 jflip, iflip,
                                 self.values['dob'], self.values['rdose'],
                                 self.nt_p, self.sigma_p, self.taur_p,
                                 self.nt_s, self.sigma_s, self.taur_s,
                                 params,
                                 [data.shape[0], data.shape[1], len(self.nt_p), len(self.nt_s), len(self.params)])
        return np.asanyarray(CTIed)