示例#1
0
    def __init__(self,stat,components,components_names,time_domain,time_domain_names,id=None):
        # Set the id
        if id is None:
            self.id=""
        else:
            self.id=id

        # Check components
        if not isinstance(components,(list,tuple)):
            raise StatisticError,"components argument must be a list"
        else:
            if  isinstance(components_names[0],str):
                self.components={}
                for i in range(len(components)):
                    self.components[components[i]]=components_names[i]
            elif isinstance(components_names,dict):
                self.components=components
            else:
               raise StatisticError,"components_names argument must be a list"

        # Check time_domain
        if not isinstance(time_domain,(list,tuple)):
            raise StatisticError,"time_domain argument must be a list"
        else:
            if isinstance(time_domain_names[0],str):
                self.time_domain={}
                for i in range(len(time_domain)):
                    self.time_domain[time_domain[i]]=time_domain_names[i]
            elif isinstance(time_domain_names,dict):
                self.time_domain=time_domain
            else:
               raise StatisticError,"time_domain_names argument must be a list" 

        # check stat array
        if isinstance (stat,numpy.ndarray ) or numpy.ma.isMA(stat):
            s=stat.shape
            if len(s)!=2:
                raise StatisticError,"stat argument must be 2D"
            nc=len(components)
            nt=len(time_domain)
            if nc!=s[0]:
                raise StatisticError,"You claim "+str(nc)+" components but your stat shows:"+str(s[0])
            if nt!=s[1]:
                raise StatisticError,"You claim "+str(nt)+" time_domain but your stat shows:"+str(s[1])
            self.stat=cdms2.createVariable(stat,copy=0,id=str(self.id))
            autobounds=cdms2.getAutoBounds()
            cdms2.setAutoBounds('off')
            compaxis=cdms2.createAxis(components)
            compaxis.id='component'
            timaxis=cdms2.createAxis(time_domain)
            timaxis.id='time_domain'
            self.stat.setAxis(0,compaxis)
            self.stat.setAxis(1,timaxis)
            self.stat.components=repr(self.components)
            self.stat.time_domain=repr(self.time_domain)
            cdms2.setAutoBounds(autobounds)
        else:
            raise StatisticError,"stat argument must be A numpy array a MA or a MV2"
示例#2
0
 def write(self,file,mode='w'):
     autobounds=cdms2.getAutoBounds()
     cdms2.setAutoBounds('off')
     if isinstance(file,str):
         f=cdms2.open(file,mode)
     elif isinstance(file,cdms2.dataset.CdmsFile):
         f=file
     else:
         raise StatisticError,"write arguments expects string or cdms2 file"
     f.write(self.stat)
     if not isinstance(file,cdms2.dataset.CdmsFile): f.close()
     cdms2.setAutoBounds(autobounds)
示例#3
0
def create_metrics(ref, test, ref_regrid, test_regrid, diff):
    """Creates the mean, max, min, rmse, corr in a dictionary"""
    orig_bounds = cdms2.getAutoBounds()
    cdms2.setAutoBounds(1)
    lev = ref.getLevel()
    if lev is not None:
        lev.setBounds(None)

    lev = test.getLevel()
    if lev is not None:
        lev.setBounds(None)

    lev = test_regrid.getLevel()
    if lev is not None:
        lev.setBounds(None)

    lev = ref_regrid.getLevel()
    if lev is not None:
        lev.setBounds(None)

    lev = diff.getLevel()
    if lev is not None:
        lev.setBounds(None)
    cdms2.setAutoBounds(orig_bounds)

    metrics_dict = {}
    metrics_dict['ref'] = {
        'min': min_cdms(ref),
        'max': max_cdms(ref),
        #'mean': numpy.nan #mean(ref, axis='yz')
        'mean': mean(ref, axis='yz')
    }
    metrics_dict['test'] = {
        'min': min_cdms(test),
        'max': max_cdms(test),
        #'mean': numpy.nan #mean(test, axis='yz')
        'mean': mean(test, axis='yz')
    }

    metrics_dict['diff'] = {
        'min': min_cdms(diff),
        'max': max_cdms(diff),
        #'mean': numpy.nan #mean(diff, axis='yz')
        'mean': mean(diff, axis='yz')
    }
    metrics_dict['misc'] = {
        'rmse': rmse(test_regrid, ref_regrid, axis='yz'),
        'corr': corr(test_regrid, ref_regrid, axis='yz')
    }

    return metrics_dict
示例#4
0
 def getAxisList(self):
     values = []
     axes = []
     for a in self.json_struct:
         values.append(set())
     self.get_axes_values_recursive(
         0, len(self.json_struct) - 1, self.data, values)
     autoBounds = cdms2.getAutoBounds()
     cdms2.setAutoBounds("off")
     for i, nm in enumerate(self.json_struct):
         axes.append(cdms2.createAxis(sorted(list(values[i])), id=nm))
     self.axes = axes
     cdms2.setAutoBounds(autoBounds)
     return self.axes
def create_metrics(ref, test, ref_regrid, test_regrid, diff):
    """
    Creates the mean, max, min, rmse, corr in a dictionary.
    """
    orig_bounds = cdms2.getAutoBounds()
    cdms2.setAutoBounds(1)
    lev = ref.getLevel()
    if lev is not None:
        lev.setBounds(None)

    lev = test.getLevel()
    if lev is not None:
        lev.setBounds(None)

    lev = test_regrid.getLevel()
    if lev is not None:
        lev.setBounds(None)

    lev = ref_regrid.getLevel()
    if lev is not None:
        lev.setBounds(None)

    lev = diff.getLevel()
    if lev is not None:
        lev.setBounds(None)
    cdms2.setAutoBounds(orig_bounds)

    metrics_dict = {}
    metrics_dict["ref"] = {
        "min": min_cdms(ref),
        "max": max_cdms(ref),
        "mean": mean(ref, axis="xz"),
    }
    metrics_dict["test"] = {
        "min": min_cdms(test),
        "max": max_cdms(test),
        "mean": mean(test, axis="xz"),
    }

    metrics_dict["diff"] = {
        "min": min_cdms(diff),
        "max": max_cdms(diff),
        "mean": mean(diff, axis="xz"),
    }
    metrics_dict["misc"] = {
        "rmse": rmse(test_regrid, ref_regrid, axis="xz"),
        "corr": corr(test_regrid, ref_regrid, axis="xz"),
    }

    return metrics_dict
示例#6
0
def linearInterpolation(A,I,levels=[100000, 92500, 85000, 70000, 60000, 50000, 40000, 30000, 25000, 20000, 15000, 10000, 7000, 5000, 3000, 2000, 1000], status=None):
    """
    Linear interpolation
    to interpolate a field from some levels to another set of levels
    Value below "surface" are masked
    
    Input
    A :      array to interpolate
    I :      interpolation field (usually Pressure or depth) from TOP (level 0) to BOTTOM (last level), i.e P value going up with each level
    levels : levels to interplate to (same units as I), default levels are:[100000, 92500, 85000, 70000, 60000, 50000, 40000, 30000, 25000, 20000, 15000, 10000, 7000, 5000, 3000, 2000, 1000]

    I and levels must have same units

    Output
    array on new levels (levels)
    
    Examples:
    A=interpolate(A,I,levels=[100000, 92500, 85000, 70000, 60000, 50000, 40000, 30000, 25000, 20000, 15000, 10000, 7000, 5000, 3000, 2000, 1000])
    """
    
    try:
        nlev=len(levels)  # Number of pressure levels
    except:
        nlev=1  # if only one level len(levels) would breaks
        levels=[levels,]
    order=A.getOrder()
    A=A(order='z...')
    I=I(order='z...')
    sh=list(I.shape)
    nsigma=sh[0] #number of sigma levels
    sh[0]=nlev
    t=MV2.zeros(sh,typecode=MV2.float32)
    sh2=I[0].shape
    prev=-1
    for ilev in range(nlev): # loop through pressure levels
        if status is not None:
            prev=genutil.statusbar(ilev,nlev-1.,prev)
        lev=levels[ilev] # get value for the level
        Iabv=MV2.ones(sh2,MV2.float)
        Aabv=-1*Iabv # Array on sigma level Above
        Abel=-1*Iabv # Array on sigma level Below
        Ibel=-1*Iabv # Pressure on sigma level Below
        Iabv=-1*Iabv # Pressure on sigma level Above
        Ieq=MV2.masked_equal(Iabv,-1) # Area where Pressure == levels
        for i in range(1,nsigma): # loop from second sigma level to last one
            a = MV2.greater_equal(I[i],  lev) # Where is the pressure greater than lev
            b =    MV2.less_equal(I[i-1],lev) # Where is the pressure less than lev
            # Now looks if the pressure level is in between the 2 sigma levels
            # If yes, sets Iabv, Ibel and Aabv, Abel
            a=MV2.logical_and(a,b)
            Iabv=MV2.where(a,I[i],Iabv) # Pressure on sigma level Above
            Aabv=MV2.where(a,A[i],Aabv) # Array on sigma level Above
            Ibel=MV2.where(a,I[i-1],Ibel) # Pressure on sigma level Below
            Abel=MV2.where(a,A[i-1],Abel) # Array on sigma level Below
            Ieq= MV2.where(MV2.equal(I[i],lev),A[i],Ieq)

        val=MV2.masked_where(MV2.equal(Ibel,-1.),numpy.ones(Ibel.shape)*lev) # set to missing value if no data below lev if there is
        
        tl=(val-Ibel)/(Iabv-Ibel)*(Aabv-Abel)+Abel # Interpolation
        if ((Ieq.mask is None) or (Ieq.mask is MV22.nomask)):
            tl=Ieq
        else:
            tl=MV2.where(1-Ieq.mask,Ieq,tl)
        t[ilev]=tl.astype(MV2.float32)

    ax=A.getAxisList()
    autobnds=cdms2.getAutoBounds()
    cdms2.setAutoBounds('off')
    lvl=cdms2.createAxis(MV2.array(levels).filled())
    cdms2.setAutoBounds(autobnds)
    try:
        lvl.units=I.units
    except:
        pass
    lvl.id='plev'
    
    try:
      t.units=I.units
    except:
      pass
  
    ax[0]=lvl
    t.setAxisList(ax)
    t.id=A.id
    for att in A.listattributes():
        setattr(t,att,getattr(A,att))
    return t(order=order)
示例#7
0
def logLinearInterpolation(A,P,levels=[100000, 92500, 85000, 70000, 60000, 50000, 40000, 30000, 25000, 20000, 15000, 10000, 7000, 5000, 3000, 2000, 1000],status=None):
    """
    Log-linear interpolation
    to convert a field from sigma levels to pressure levels
    Value below surface are masked
    
    Input
    A :    array on sigma levels
    P :    pressure field from TOP (level 0) to BOTTOM (last level)
    levels : pressure levels to interplate to (same units as P), default levels are:[100000, 92500, 85000, 70000, 60000, 50000, 40000, 30000, 25000, 20000, 15000, 10000, 7000, 5000, 3000, 2000, 1000]

    P and levels must have same units

    Output
    array on pressure levels (levels)
    
    Examples:
    A=logLinearInterpolation(A,P),levels=[100000, 92500, 85000, 70000, 60000, 50000, 40000, 30000, 25000, 20000, 15000, 10000, 7000, 5000, 3000, 2000, 1000])
    """
    
    try:
        nlev=len(levels)  # Number of pressure levels
    except:
        nlev=1  # if only one level len(levels) would breaks
        levels=[levels,]
    order=A.getOrder()
    A=A(order='z...')
    P=P(order='z...')
    sh=list(P.shape)
    nsigma=sh[0] #number of sigma levels
    sh[0]=nlev
    t=MV2.zeros(sh,typecode=MV2.float32)
    sh2=P[0].shape
    prev=-1
    for ilev in range(nlev): # loop through pressure levels
        if status is not None:
            prev=genutil.statusbar(ilev,nlev-1.,prev)
        lev=levels[ilev] # get value for the level
        Pabv=MV2.ones(sh2,MV2.float)
        Aabv=-1*Pabv # Array on sigma level Above
        Abel=-1*Pabv # Array on sigma level Below
        Pbel=-1*Pabv # Pressure on sigma level Below
        Pabv=-1*Pabv # Pressure on sigma level Above
        Peq=MV2.masked_equal(Pabv,-1) # Area where Pressure == levels
        for i in range(1,nsigma): # loop from second sigma level to last one
            a=MV2.greater_equal(P[i],  lev) # Where is the pressure greater than lev
            b=   MV2.less_equal(P[i-1],lev) # Where is the pressure less than lev
            # Now looks if the pressure level is in between the 2 sigma levels
            # If yes, sets Pabv, Pbel and Aabv, Abel
            a=MV2.logical_and(a,b)
            Pabv=MV2.where(a,P[i],Pabv) # Pressure on sigma level Above
            Aabv=MV2.where(a,A[i],Aabv) # Array on sigma level Above
            Pbel=MV2.where(a,P[i-1],Pbel) # Pressure on sigma level Below
            Abel=MV2.where(a,A[i-1],Abel) # Array on sigma level Below
            Peq= MV2.where(MV2.equal(P[i],lev),A[i],Peq)

        val=MV2.masked_where(MV2.equal(Pbel,-1),numpy.ones(Pbel.shape)*lev) # set to missing value if no data below lev if there is
        
        tl=MV2.log(val/Pbel)/MV2.log(Pabv/Pbel)*(Aabv-Abel)+Abel # Interpolation
        if ((Peq.mask is None) or (Peq.mask is MV2.nomask)):
            tl=Peq
        else:
            tl=MV2.where(1-Peq.mask,Peq,tl)
        t[ilev]=tl.astype(MV2.float32)
        
    ax=A.getAxisList()
    autobnds=cdms2.getAutoBounds()
    cdms2.setAutoBounds('off')
    lvl=cdms2.createAxis(MV2.array(levels).filled())
    cdms2.setAutoBounds(autobnds)
    try:
        lvl.units=P.units
    except:
        pass
    lvl.id='plev'
    
    try:
      t.units=P.units
    except:
      pass
  
    ax[0]=lvl
    t.setAxisList(ax)
    t.id=A.id
    for att in A.listattributes():
        setattr(t,att,getattr(A,att))
    return t(order=order)
示例#8
0
            variables[41:45]
    ):  #84 = tas, #41 = pr, 113 = tos 17 = evs (need to test mrro 36)
        varb = variables[variables.index(i)].split('/')[5]
        print Vcount, varb
        if varb in MissingVariables or varb in ['tos'
                                                ]:  ## NOTE THE TOS!!!! ####
            print 'Skipping variable b/c no matching varb in AMON table'
            continue

        #%% INPUT JSON FILE CREATION WITH LOOP

        #create subdirectory path for variable
        pathin = pathin1 + varb

        #check if autobounds is on, off, or on grid mode
        print cdm.getAutoBounds()

        # creates sub direc in users save path to store the large amount of cmor_input json files that will be created
        subdir = 'input_json_files'
        if not os.path.exists(savepath + subdir):
            os.makedirs(savepath + subdir)

        # get the aliases for the data that is to be re-formatted
        lst = os.listdir(pathin)
        lst.sort()
        # Sort alphabetically

        print 'Starting'
        #%%
        print ' '
        print 'CREATING USER INPUT JSON'
示例#9
0
def linearInterpolation(A,
                        I,
                        levels=[
                            100000, 92500, 85000, 70000, 60000, 50000, 40000,
                            30000, 25000, 20000, 15000, 10000, 7000, 5000,
                            3000, 2000, 1000
                        ],
                        status=None):
    """
    Linear interpolation
    to interpolate a field from some levels to another set of levels
    Value below "surface" are masked
    
    Input
    A :      array to interpolate
    I :      interpolation field (usually Pressure or depth) from TOP (level 0) to BOTTOM (last level), i.e P value going up with each level
    levels : levels to interplate to (same units as I), default levels are:[100000, 92500, 85000, 70000, 60000, 50000, 40000, 30000, 25000, 20000, 15000, 10000, 7000, 5000, 3000, 2000, 1000]

    I and levels must have same units

    Output
    array on new levels (levels)
    
    Examples:
    A=interpolate(A,I,levels=[100000, 92500, 85000, 70000, 60000, 50000, 40000, 30000, 25000, 20000, 15000, 10000, 7000, 5000, 3000, 2000, 1000])
    """

    try:
        nlev = len(levels)  # Number of pressure levels
    except:
        nlev = 1  # if only one level len(levels) would breaks
        levels = [
            levels,
        ]
    order = A.getOrder()
    A = A(order='z...')
    I = I(order='z...')
    sh = list(I.shape)
    nsigma = sh[0]  #number of sigma levels
    sh[0] = nlev
    t = MV2.zeros(sh, typecode=MV2.float32)
    sh2 = I[0].shape
    prev = -1
    for ilev in range(nlev):  # loop through pressure levels
        if status is not None:
            prev = genutil.statusbar(ilev, nlev - 1., prev)
        lev = levels[ilev]  # get value for the level
        Iabv = MV2.ones(sh2, MV2.float)
        Aabv = -1 * Iabv  # Array on sigma level Above
        Abel = -1 * Iabv  # Array on sigma level Below
        Ibel = -1 * Iabv  # Pressure on sigma level Below
        Iabv = -1 * Iabv  # Pressure on sigma level Above
        Ieq = MV2.masked_equal(Iabv, -1)  # Area where Pressure == levels
        for i in range(1, nsigma):  # loop from second sigma level to last one
            a = MV2.greater_equal(
                I[i], lev)  # Where is the pressure greater than lev
            b = MV2.less_equal(I[i - 1],
                               lev)  # Where is the pressure less than lev
            # Now looks if the pressure level is in between the 2 sigma levels
            # If yes, sets Iabv, Ibel and Aabv, Abel
            a = MV2.logical_and(a, b)
            Iabv = MV2.where(a, I[i], Iabv)  # Pressure on sigma level Above
            Aabv = MV2.where(a, A[i], Aabv)  # Array on sigma level Above
            Ibel = MV2.where(a, I[i - 1],
                             Ibel)  # Pressure on sigma level Below
            Abel = MV2.where(a, A[i - 1], Abel)  # Array on sigma level Below
            Ieq = MV2.where(MV2.equal(I[i], lev), A[i], Ieq)

        val = MV2.masked_where(
            MV2.equal(Ibel, -1.),
            numpy.ones(Ibel.shape) *
            lev)  # set to missing value if no data below lev if there is

        tl = (val - Ibel) / (Iabv - Ibel) * (Aabv -
                                             Abel) + Abel  # Interpolation
        if ((Ieq.mask is None) or (Ieq.mask is MV22.nomask)):
            tl = Ieq
        else:
            tl = MV2.where(1 - Ieq.mask, Ieq, tl)
        t[ilev] = tl.astype(MV2.float32)

    ax = A.getAxisList()
    autobnds = cdms2.getAutoBounds()
    cdms2.setAutoBounds('off')
    lvl = cdms2.createAxis(MV2.array(levels).filled())
    cdms2.setAutoBounds(autobnds)
    try:
        lvl.units = I.units
    except:
        pass
    lvl.id = 'plev'

    try:
        t.units = I.units
    except:
        pass

    ax[0] = lvl
    t.setAxisList(ax)
    t.id = A.id
    for att in A.listattributes():
        setattr(t, att, getattr(A, att))
    return t(order=order)
示例#10
0
def logLinearInterpolation(A,
                           P,
                           levels=[
                               100000, 92500, 85000, 70000, 60000, 50000,
                               40000, 30000, 25000, 20000, 15000, 10000, 7000,
                               5000, 3000, 2000, 1000
                           ],
                           status=None):
    """
    Log-linear interpolation
    to convert a field from sigma levels to pressure levels
    Value below surface are masked
    
    Input
    A :    array on sigma levels
    P :    pressure field from TOP (level 0) to BOTTOM (last level)
    levels : pressure levels to interplate to (same units as P), default levels are:[100000, 92500, 85000, 70000, 60000, 50000, 40000, 30000, 25000, 20000, 15000, 10000, 7000, 5000, 3000, 2000, 1000]

    P and levels must have same units

    Output
    array on pressure levels (levels)
    
    Examples:
    A=logLinearInterpolation(A,P),levels=[100000, 92500, 85000, 70000, 60000, 50000, 40000, 30000, 25000, 20000, 15000, 10000, 7000, 5000, 3000, 2000, 1000])
    """

    try:
        nlev = len(levels)  # Number of pressure levels
    except:
        nlev = 1  # if only one level len(levels) would breaks
        levels = [
            levels,
        ]
    order = A.getOrder()
    A = A(order='z...')
    P = P(order='z...')
    sh = list(P.shape)
    nsigma = sh[0]  #number of sigma levels
    sh[0] = nlev
    t = MV2.zeros(sh, typecode=MV2.float32)
    sh2 = P[0].shape
    prev = -1
    for ilev in range(nlev):  # loop through pressure levels
        if status is not None:
            prev = genutil.statusbar(ilev, nlev - 1., prev)
        lev = levels[ilev]  # get value for the level
        Pabv = MV2.ones(sh2, MV2.float)
        Aabv = -1 * Pabv  # Array on sigma level Above
        Abel = -1 * Pabv  # Array on sigma level Below
        Pbel = -1 * Pabv  # Pressure on sigma level Below
        Pabv = -1 * Pabv  # Pressure on sigma level Above
        Peq = MV2.masked_equal(Pabv, -1)  # Area where Pressure == levels
        for i in range(1, nsigma):  # loop from second sigma level to last one
            a = MV2.greater_equal(
                P[i], lev)  # Where is the pressure greater than lev
            b = MV2.less_equal(P[i - 1],
                               lev)  # Where is the pressure less than lev
            # Now looks if the pressure level is in between the 2 sigma levels
            # If yes, sets Pabv, Pbel and Aabv, Abel
            a = MV2.logical_and(a, b)
            Pabv = MV2.where(a, P[i], Pabv)  # Pressure on sigma level Above
            Aabv = MV2.where(a, A[i], Aabv)  # Array on sigma level Above
            Pbel = MV2.where(a, P[i - 1],
                             Pbel)  # Pressure on sigma level Below
            Abel = MV2.where(a, A[i - 1], Abel)  # Array on sigma level Below
            Peq = MV2.where(MV2.equal(P[i], lev), A[i], Peq)

        val = MV2.masked_where(
            MV2.equal(Pbel, -1),
            numpy.ones(Pbel.shape) *
            lev)  # set to missing value if no data below lev if there is

        tl = MV2.log(val / Pbel) / MV2.log(
            Pabv / Pbel) * (Aabv - Abel) + Abel  # Interpolation
        if ((Peq.mask is None) or (Peq.mask is MV2.nomask)):
            tl = Peq
        else:
            tl = MV2.where(1 - Peq.mask, Peq, tl)
        t[ilev] = tl.astype(MV2.float32)

    ax = A.getAxisList()
    autobnds = cdms2.getAutoBounds()
    cdms2.setAutoBounds('off')
    lvl = cdms2.createAxis(MV2.array(levels).filled())
    cdms2.setAutoBounds(autobnds)
    try:
        lvl.units = P.units
    except:
        pass
    lvl.id = 'plev'

    try:
        t.units = P.units
    except:
        pass

    ax[0] = lvl
    t.setAxisList(ax)
    t.id = A.id
    for att in A.listattributes():
        setattr(t, att, getattr(A, att))
    return t(order=order)
示例#11
0
文件: yxvsxfill.py 项目: AZed/uvcdat
    def plot(self,data,data2,template = None, bg=0, x=None):
        if x is None:
            x = self.x
        if template is None:
            template = self.template
        elif isinstance(template,str):
            template = x.gettemplate(template)
        elif not vcs.istemplate(template):
            raise "Error did not know what to do with template: %s" % template
        
        if not isinstance(data,cdms2.tvariable.TransientVariable):
            mode= cdms2.getAutoBounds()
            cdms2.setAutoBounds("on")
            data = MV2.array(data)
            data.getAxis(-1).getBounds()
            cdms2.setAutoBounds(mode)

        while data.rank()>1:
            data = data[0]
        while data2.rank()>1:
            data2 = data2[0]

        # ok now we have a good x and a good data
        npts1 = len(data)
        npts2 = len(data2)

        # create the primitive
        fill = x.createfillarea()
        line = x.createline()
        fill.viewport = [template.data.x1,template.data.x2,template.data.y1,template.data.y2]
        line.viewport = [template.data.x1,template.data.x2,template.data.y1,template.data.y2]
        ax = data.getAxis(0)[:]
        ax2 = data.getAxis(0)[:]
        xmn,xmx = vcs.minmax(ax,ax2)
        ymn,ymx = vcs.minmax(data,data2)
        
        xmn,xmx,ymn,ymx = self.prep_plot(xmn,xmx,ymn,ymx)
        
        fill.worldcoordinate=[xmn,xmx,ymn,ymx]
        line.worldcoordinate=[xmn,xmx,ymn,ymx]
        
        fill.style = [self.fillareastyle,]
        fill.color = [self.fillareacolor,]
        fill.index = [self.fillareaindex,]

        line.type = [self.line,]
        line.width = [self.linewidth,]
        line.color = [self.linecolor,]
        
        xs = []
        ys = []
        

        xs = numpy.concatenate((ax[:],ax2[::-1])).tolist()
        ys = numpy.concatenate((data[:],data2[::-1])).tolist()

        xs.append(xs[0])
        ys.append(ys[0])
        
        fill.x = xs
        fill.y = ys

        line.x = xs
        line.y = ys

        
        displays = []
        displays.append(x.plot(fill,bg=bg))
        displays.append(x.plot(line,bg=bg))

        x.worldcoordinate = fill.worldcoordinate 

        dsp = template.plot(data,self,bg=bg)
        for d in dsp:
            displays.append(d)

        self.restore()
        return displays
示例#12
0
def linearInterpolation(A,
                        Idx,
                        levels=[
                            100000, 92500, 85000, 70000, 60000, 50000, 40000,
                            30000, 25000, 20000, 15000, 10000, 7000, 5000,
                            3000, 2000, 1000
                        ],
                        status=None,
                        axis='z'):
    """
    Linear interpolation to interpolate a field from some levels to another set of levels
    Values below "surface" are masked.


    :param A: array to interpolate
    :type A:
    :param I: interpolation field (usually Pressure or depth) from TOP (level 0) to BOTTOM (last level)
            i.e P value going up with each level.
    :type I:
    :param levels: levels to interpolate to (same units as I).
                    Default levels:[100000, 92500, 85000, 70000, 60000, 50000, 40000,
                        30000, 25000, 20000, 15000, 10000, 7000, 5000, 3000, 2000, 1000]
    :type levels:
    :param axis: Axis over which to do the linear interpolation.
                Can provide either an int representing axis index, or the axis name.
                Default: 'z'.
    :type axis: str or int

    .. note::

        I and levels must have same units

    :returns: array on new levels (levels)

    :Examples:

        .. doctest:: vertical_linearInterpolation

            >>> A=interpolate(A,I) # interpolates A over default levels
    """

    try:
        nlev = len(levels)  # Number of pressure levels
    except BaseException:
        nlev = 1  # if only one level len(levels) would breaks
        levels = [
            levels,
        ]
    order = A.getOrder()
    A = A(order='%s...' % axis)
    Idx = Idx(order='%s...' % axis)
    sh = list(Idx.shape)
    nsigma = sh[0]  # number of sigma levels
    sh[0] = nlev
    t = MV2.zeros(sh, typecode=MV2.float32)
    sh2 = Idx[0].shape
    prev = -1
    for ilev in range(nlev):  # loop through pressure levels
        if status is not None:
            prev = genutil.statusbar(ilev, nlev - 1., prev)
        lev = levels[ilev]  # get value for the level
        Iabv = MV2.ones(sh2, MV2.float)
        Aabv = -1 * Iabv  # Array on sigma level Above
        Abel = -1 * Iabv  # Array on sigma level Below
        Ibel = -1 * Iabv  # Pressure on sigma level Below
        Iabv = -1 * Iabv  # Pressure on sigma level Above
        Ieq = MV2.masked_equal(Iabv, -1)  # Area where Pressure == levels
        for i in range(1, nsigma):  # loop from second sigma level to last one
            a = MV2.greater_equal(
                Idx[i], lev)  # Where is the pressure greater than lev
            b = MV2.less_equal(Idx[i - 1],
                               lev)  # Where is the pressure less than lev
            # Now looks if the pressure level is in between the 2 sigma levels
            # If yes, sets Iabv, Ibel and Aabv, Abel
            a = MV2.logical_and(a, b)
            Iabv = MV2.where(a, Idx[i], Iabv)  # Pressure on sigma level Above
            Aabv = MV2.where(a, A[i], Aabv)  # Array on sigma level Above
            Ibel = MV2.where(a, Idx[i - 1],
                             Ibel)  # Pressure on sigma level Below
            Abel = MV2.where(a, A[i - 1], Abel)  # Array on sigma level Below
            Ieq = MV2.where(MV2.equal(Idx[i], lev), A[i], Ieq)

        val = MV2.masked_where(MV2.equal(Ibel, -1.),
                               numpy.ones(Ibel.shape) * lev)
        # set to missing value if no data below lev if
        # there is

        tl = (val - Ibel) / (Iabv - Ibel) * \
            (Aabv - Abel) + Abel  # Interpolation
        if ((Ieq.mask is None) or (Ieq.mask is MV2.nomask)):
            tl = Ieq
        else:
            tl = MV2.where(1 - Ieq.mask, Ieq, tl)
        t[ilev] = tl.astype(MV2.float32)

    ax = A.getAxisList()
    autobnds = cdms2.getAutoBounds()
    cdms2.setAutoBounds('off')
    lvl = cdms2.createAxis(MV2.array(levels).filled())
    cdms2.setAutoBounds(autobnds)
    try:
        lvl.units = Idx.units
    except BaseException:
        pass
    lvl.id = 'plev'

    try:
        t.units = Idx.units
    except BaseException:
        pass

    ax[0] = lvl
    t.setAxisList(ax)
    t.id = A.id
    for att in A.listattributes():
        setattr(t, att, getattr(A, att))
    return t(order=order)
示例#13
0
文件: histograms.py 项目: AZed/uvcdat
    def plot(self,data,template = None, bg=0, x=None):
        if x is None:
            x = self.x
        if template is None:
            template = self.template
        elif isinstance(template,str):
            template = x.gettemplate(template)
        elif not vcs.istemplate(template):
            raise "Error did not know what to do with template: %s" % template
        
        if not isinstance(data,cdms2.tvariable.TransientVariable):
            mode= cdms2.getAutoBounds()
            cdms2.setAutoBounds("on")
            data = MV2.array(data)
            data.getAxis(-1).getBounds()
            cdms2.setAutoBounds(mode)

        while data.rank()>1:
            data = data[0]

        # ok now we have a good x and a good data
        nbars = len(data)

        # create the primitive
        fill = x.createfillarea()
        line = x.createline()
        fill.viewport = [template.data.x1,template.data.x2,template.data.y1,template.data.y2]
        line.viewport = [template.data.x1,template.data.x2,template.data.y1,template.data.y2]
        axb = data.getAxis(0).getBounds()
        xmn,xmx = vcs.minmax(axb)
        ymn,ymx = vcs.minmax(data)
        
        xmn,xmx,ymn,ymx = self.prep_plot(xmn,xmx,ymn,ymx)
        
        fill.worldcoordinate=[xmn,xmx,ymn,ymx]
        line.worldcoordinate=[xmn,xmx,ymn,ymx]
        
        styles =[]
        cols = []
        indices = []
        lt = []
        lw =[]
        lc = []
        xs = []
        ys = []
        

        for i in range(nbars):
            if i < len(self.fillareastyles):
                styles.append(self.fillareastyles[i])
            else:
                styles.append(self.fillareastyles[-1])
            if i < len(self.fillareacolors):
                cols.append(self.fillareacolors[i])
            else:
                cols.append(self.fillareacolors[-1])
            if i < len(self.fillareaindices):
                indices.append(self.fillareaindices[i])
            else:
                indices.append(self.fillareaindices[-1])
            if i < len(self.line):
                lt.append( self.line[i])
            else:
                lt.append(self.line[-1])
            if i < len(self.linewidth):
                lw.append( self.linewidth[i])
            else:
                lw.append(self.linewidth[-1])
            if i < len(self.line):
                lc.append( self.linecolors[i])
            else:
                lc.append(self.linecolors[-1])
            
            xs.append( [axb[i][0],axb[i][1],axb[i][1],axb[i][0],axb[i][0]])
            ys.append( [0,0,data[i],data[i],0])


        fill.style = styles
        fill.x = xs
        fill.y = ys
        fill.style
        fill.index = indices
        fill.color = cols
        line.x = xs
        line.y = ys
        line.type = lt
        line.width = lw
        line.color = lc

        displays = []
        displays.append(x.plot(fill,bg=bg))
        displays.append(x.plot(line,bg=bg))

        x.worldcoordinate = fill.worldcoordinate 
        dsp = template.plot(data,self,bg=bg)
        for d in dsp:
            displays.append(d)

        self.restore()
        return displays
示例#14
0
    def get(self,components=None,time_domain=None):

        # Check the components
        if not components is None:
            if isinstance(components,(int,float,numpy.floating)):
                components=[components]
            if isinstance(components,(list,tuple)):
                k=self.components.keys()
                for c in components:
                    if not c in k:
                        raise StatisticError,"component:"+str(c)+"is not defined"
            else:
                raise StatisticError,"components must be a number or list (or None)"

        # Check the time components
        if not time_domain is None:
            if  isinstance(time_domain,(int,float,numpy.floating)):
                time_domain=[time_domain]
            if isinstance(time_domain,(list,tuple)):
                k=self.time_domain.keys()
                for c in time_domain:
                    if not c in k:
                        raise StatisticError,"component:"+str(c)+"is not defined"
            else:
                raise StatisticError,"time_domain must be a number or list (or None)"
            
        # Now gets only the wanted components
        if components is None and time_domain is None:
            return self.stat()

        # Now prepare the output array
        s=self.stat.shape
        if components is None:
            nc=s[0]
        else:
            nc=len(components)
        if time_domain is None:
            nt=s[1]
        else:
            nt=len(time_domain)

        out=MV2.zeros((nc,nt),typecode=numpy.float32)
        out.id=self.stat.id

        autobounds=cdms2.getAutoBounds()
        cdms2.setAutoBounds('on')
        if components is None:# Retrieve all the comp
            components_dic=self.components
            time_domain_dic={}
            for it in range(nt):
                time_domain_dic[time_domain[it]]=self.time_domain[time_domain[it]]
                out[:,it]=self.stat(time_domain=(time_domain[it],time_domain[it],'cc'),squeeze=1)
        elif time_domain is None:# Retrieve all the time
            time_domain_dic=self.time_domain
            for ic in range(nc):
                components_dic[components[ic]]=self.components[components[ic]]
                out[ic]=self.stat(component=components[ic],squeeze=1)
        else: # Retrieve specific comp and time_domain
            for ic in range(nc):
                components_dic[components[ic]]=self.components[components[ic]]
                for it in range(nt):
                    if ic==0 : time_domain_dic[time_domain[it]]=self.time_domain[time_domain[it]]
                    out[ic,it]=self.stat(component=components[ic],time_domain=time_domain[it],squeeze=1)

        cdms2.setAutoBounds('off')
        # Create the Axis
        if components is None:
            compaxis=self.stat.getAxis(0)
        else:
            compaxis=cdms2.createAxis(components)
            compaxis.id='component'
        if time_domain is None:
            timaxis=self.stat.getAxis(1)
        else:
            timaxis=cdms2.createAxis(time_domain)
            timaxis.id='time_domain'
            
        # Set the Axes
        out.setAxis(0,compaxis)
        out.setAxis(1,timaxis)
        out.components=repr(components_dic)
        out.time_domain=repr(time_domain_dic)
        cdms2.setAutoBounds(autobounds)
        return out(squeeze=1)
示例#15
0
    def plot(self, data, data2, template=None, bg=0, x=None):
        if x is None:
            x = self.x
        if template is None:
            template = self.template
        elif isinstance(template, str):
            template = x.gettemplate(template)
        elif not vcs.istemplate(template):
            raise "Error did not know what to do with template: %s" % template

        if not isinstance(data, cdms2.tvariable.TransientVariable):
            mode = cdms2.getAutoBounds()
            cdms2.setAutoBounds("on")
            data = MV2.array(data)
            data.getAxis(-1).getBounds()
            cdms2.setAutoBounds(mode)

        while data.ndim > 1:
            data = data[0]
        while data2.ndim > 1:
            data2 = data2[0]

        # ok now we have a good x and a good data

        # create the primitive
        fill = x.createfillarea()
        line = x.createline()
        fill.viewport = [
            template.data.x1, template.data.x2, template.data.y1,
            template.data.y2
        ]
        line.viewport = [
            template.data.x1, template.data.x2, template.data.y1,
            template.data.y2
        ]
        ax = data.getAxis(0)[:]
        ax2 = data.getAxis(0)[:]
        xmn, xmx = vcs.minmax(ax, ax2)
        ymn, ymx = vcs.minmax(data, data2)

        xmn, xmx, ymn, ymx = self.prep_plot(xmn, xmx, ymn, ymx)

        fill.worldcoordinate = [xmn, xmx, ymn, ymx]
        line.worldcoordinate = [xmn, xmx, ymn, ymx]

        fill.style = [
            self.fillareastyle,
        ]
        fill.color = [
            self.fillareacolor,
        ]
        fill.index = [
            self.fillareaindex,
        ]

        line.type = [
            self.linetype,
        ]
        line.width = [
            self.linewidth,
        ]
        line.color = [
            self.linecolor,
        ]

        xs = []
        ys = []

        xs = numpy.concatenate((ax[:], ax2[::-1])).tolist()
        ys = numpy.concatenate((data[:], data2[::-1])).tolist()

        xs.append(xs[0])
        ys.append(ys[0])

        fill.x = xs
        fill.y = ys

        line.x = xs
        line.y = ys

        displays = []
        displays.append(x.plot(fill, bg=bg))
        displays.append(x.plot(line, bg=bg))

        x.worldcoordinate = fill.worldcoordinate

        dsp = template.plot(x, data, self, bg=bg)
        for d in dsp:
            displays.append(d)

        self.restore()
        return displays
示例#16
0
    def __call__(self, merge=[], **kargs):
        """ Returns the array of values"""
        # First clean up kargs
        if "merge" in kargs:
            merge = kargs["merge"]
            del(kargs["merge"])
        order = None
        axes_ids = self.getAxisIds()
        if "order" in kargs:
            # If it's an actual axis assume that it's what user wants
            # Otherwise it's an out order keyword
            if "order" not in axes_ids:
                order = kargs["order"]
                del(kargs["order"])
        ab = cdms2.getAutoBounds()
        cdms2.setAutoBounds("off")
        axes = self.getAxisList()
        if merge != []:
            if isinstance(merge[0], str):
                merge = [merge, ]
        if merge != []:
            for merger in merge:
                for merge_axis_id in merger:
                    if merge_axis_id not in axes_ids:
                        raise RuntimeError(
                            "You requested to merge axis is '{}' which is not valid. Axes: {}".format(
                                merge_axis_id, axes_ids))
        sh = []
        ids = []
        used_ids = []
        for a in axes:
            # Regular axis not a merged one
            sh.append(len(a))  # store length to construct array shape
            ids.append(a.id)  # store ids

            used_ids.append(a.id)

        # first let's see which vars are actually asked for
        # for now assume all keys means restriction on dims
        if not isinstance(merge, (list, tuple)):
            raise RuntimeError(
                "merge keyword must be a list of dimensions to merge together")

        if len(merge) > 0 and not isinstance(merge[0], (list, tuple)):
            merge = [merge, ]

        for axis_id in kargs:
            if axis_id not in ids:
                raise ValueError("Invalid axis '%s'" % axis_id)
            index = ids.index(axis_id)
            value = kargs[axis_id]
            if isinstance(value, basestring):
                value = [value]
            if not isinstance(value, (list, tuple, slice)):
                raise TypeError(
                    "Invalid subsetting type for axis '%s', axes can only be subsetted by string,list or slice" %
                    axis_id)
            if isinstance(value, slice):
                axes[index] = axes[index].subAxis(
                    value.start, value.stop, value.step)
                sh[index] = len(axes[index])
            else:  # ok it's a list
                for v in value:
                    if v not in axes[index][:]:
                        raise ValueError(
                            "Unkwown value '%s' for axis '%s'" %
                            (v, axis_id))
                axis = cdms2.createAxis(value, id=axes[index].id)
                axes[index] = axis
                sh[index] = len(axis)

        array = numpy.ma.ones(sh, dtype=numpy.float)
        # Now let's fill this array
        self.get_array_values_from_dict_recursive(array, [], [], [], axes)

        # Ok at this point we need to take care of merged axes
        # First let's create the merged axes
        axes_to_group = []
        for merger in merge:
            merged_axes = []
            for axid in merger:
                for ax in axes:
                    if ax.id == axid:
                        merged_axes.append(ax)
            axes_to_group.append(merged_axes)
        new_axes = [groupAxes(grp_axes) for grp_axes in axes_to_group]
        sh2 = list(sh)
        for merger in merge:
            for merger in merge:  # loop through all possible merging
                merged_indices = []
                for id in merger:
                    merged_indices.append(axes_ids.index(id))
                for indx in merged_indices:
                    sh2[indx] = 1
                smallest = min(merged_indices)
                for indx in merged_indices:
                    sh2[smallest] *= sh[indx]

        myorder = []
        for index in range(len(sh)):
            if index in myorder:
                continue
            for merger in merge:
                merger = [axes_ids.index(x) for x in merger]
                if index in merger and index not in myorder:
                    for indx in merger:
                        myorder.append(indx)
            if index not in myorder:  # ok did not find this one anywhere
                myorder.append(index)

        outData = numpy.transpose(array, myorder)
        outData = numpy.reshape(outData, sh2)

        yank = []
        for merger in merge:
            merger = [axes_ids.index(x) for x in merger]
            mn = min(merger)
            merger.remove(mn)
            yank += merger
        yank = sorted(yank, reverse=True)
        for yk in yank:
            extract = (slice(0, None),) * yk
            extract += (0,)
            outData = outData[extract]
        # Ok now let's apply the newaxes
        sub = 0
        outData = MV2.array(outData)
        merged_axis_done = []
        for index in range(len(array.shape)):
            foundInMerge = False
            for imerge, merger in enumerate(merge):
                merger = [axes_ids.index(x) for x in merger]
                if index in merger:
                    foundInMerge = True
                    if imerge not in merged_axis_done:
                        merged_axis_done.append(imerge)
                        setMergedAxis = imerge
                    else:
                        setMergedAxis = -1
            if not foundInMerge:
                outData.setAxis(index - sub, axes[index])
            else:
                if setMergedAxis == -1:
                    sub += 1
                else:
                    outData.setAxis(index - sub, new_axes[setMergedAxis])
        outData = MV2.masked_greater(outData, 9.98e20)
        outData.id = "pmp"
        if order is not None:
            myorder = "".join(["({})".format(nm) for nm in order])
            outData = outData(order=myorder)
        # Merge needs cleaning for extra dims crated
        if merge != []:
            for i in range(outData.ndim):
                outData = scrap(outData, axis=i)
        outData = MV2.masked_greater(outData, 9.9e19)
        cdms2.setAutoBounds(ab)
        return outData
示例#17
0
    def __call__(self, merge=[], **kargs):
        """ Returns the array of values"""
        # First clean up kargs
        if "merge" in kargs:
            merge = kargs["merge"]
            del (kargs["merge"])
        order = None
        axes_ids = self.getAxisIds()
        if "order" in kargs:
            # If it's an actual axis assume that it's what user wants
            # Otherwise it's an out order keyword
            if "order" not in axes_ids:
                order = kargs["order"]
                del (kargs["order"])
        ab = cdms2.getAutoBounds()
        cdms2.setAutoBounds("off")
        axes = self.getAxisList()
        if merge != []:
            if isinstance(merge[0], str):
                merge = [
                    merge,
                ]
        if merge != []:
            for merger in merge:
                for merge_axis_id in merger:
                    if merge_axis_id not in axes_ids:
                        raise RuntimeError(
                            "You requested to merge axis is '{}' which is not valid. Axes: {}"
                            .format(merge_axis_id, axes_ids))
        sh = []
        ids = []
        used_ids = []
        for a in axes:
            # Regular axis not a merged one
            sh.append(len(a))  # store length to construct array shape
            ids.append(a.id)  # store ids

            used_ids.append(a.id)

        # first let's see which vars are actually asked for
        # for now assume all keys means restriction on dims
        if not isinstance(merge, (list, tuple)):
            raise RuntimeError(
                "merge keyword must be a list of dimensions to merge together")

        if len(merge) > 0 and not isinstance(merge[0], (list, tuple)):
            merge = [
                merge,
            ]

        for axis_id in kargs:
            if axis_id not in ids:
                raise ValueError("Invalid axis '%s'" % axis_id)
            index = ids.index(axis_id)
            value = kargs[axis_id]
            if isinstance(value, basestring):
                value = [value]
            if not isinstance(value, (list, tuple, slice)):
                raise TypeError(
                    "Invalid subsetting type for axis '%s', axes can only be subsetted by string,list or slice"
                    % axis_id)
            if isinstance(value, slice):
                axes[index] = axes[index].subAxis(value.start, value.stop,
                                                  value.step)
                sh[index] = len(axes[index])
            else:  # ok it's a list
                for v in value:
                    if v not in axes[index][:]:
                        raise ValueError("Unkwown value '%s' for axis '%s'" %
                                         (v, axis_id))
                axis = cdms2.createAxis(value, id=axes[index].id)
                axes[index] = axis
                sh[index] = len(axis)

        array = numpy.ma.ones(sh, dtype=numpy.float)
        # Now let's fill this array
        self.get_array_values_from_dict_recursive(array, [], [], [], axes)

        # Ok at this point we need to take care of merged axes
        # First let's create the merged axes
        axes_to_group = []
        for merger in merge:
            merged_axes = []
            for axid in merger:
                for ax in axes:
                    if ax.id == axid:
                        merged_axes.append(ax)
            axes_to_group.append(merged_axes)
        new_axes = [groupAxes(grp_axes) for grp_axes in axes_to_group]
        sh2 = list(sh)
        for merger in merge:
            for merger in merge:  # loop through all possible merging
                merged_indices = []
                for id in merger:
                    merged_indices.append(axes_ids.index(id))
                for indx in merged_indices:
                    sh2[indx] = 1
                smallest = min(merged_indices)
                for indx in merged_indices:
                    sh2[smallest] *= sh[indx]

        myorder = []
        for index in range(len(sh)):
            if index in myorder:
                continue
            for merger in merge:
                merger = [axes_ids.index(x) for x in merger]
                if index in merger and index not in myorder:
                    for indx in merger:
                        myorder.append(indx)
            if index not in myorder:  # ok did not find this one anywhere
                myorder.append(index)

        outData = numpy.transpose(array, myorder)
        outData = numpy.reshape(outData, sh2)

        yank = []
        for merger in merge:
            merger = [axes_ids.index(x) for x in merger]
            mn = min(merger)
            merger.remove(mn)
            yank += merger
        yank = sorted(yank, reverse=True)
        for yk in yank:
            extract = (slice(0, None), ) * yk
            extract += (0, )
            outData = outData[extract]
        # Ok now let's apply the newaxes
        sub = 0
        outData = MV2.array(outData)
        merged_axis_done = []
        for index in range(len(array.shape)):
            foundInMerge = False
            for imerge, merger in enumerate(merge):
                merger = [axes_ids.index(x) for x in merger]
                if index in merger:
                    foundInMerge = True
                    if imerge not in merged_axis_done:
                        merged_axis_done.append(imerge)
                        setMergedAxis = imerge
                    else:
                        setMergedAxis = -1
            if not foundInMerge:
                outData.setAxis(index - sub, axes[index])
            else:
                if setMergedAxis == -1:
                    sub += 1
                else:
                    outData.setAxis(index - sub, new_axes[setMergedAxis])
        outData = MV2.masked_greater(outData, 9.98e20)
        outData.id = "pmp"
        if order is not None:
            myorder = "".join(["({})".format(nm) for nm in order])
            outData = outData(order=myorder)
        # Merge needs cleaning for extra dims crated
        if merge != []:
            for i in range(outData.ndim):
                outData = scrap(outData, axis=i)
        outData = MV2.masked_greater(outData, 9.9e19)
        cdms2.setAutoBounds(ab)
        return outData
示例#18
0
    def plot(self, data, template=None, bg=0, x=None):
        if x is None:
            x = self.x
        if template is None:
            template = self.template
        elif isinstance(template, str):
            template = x.gettemplate(template)
        elif not vcs.istemplate(template):
            raise "Error did not know what to do with template: %s" % template

        if not isinstance(data, cdms2.tvariable.TransientVariable):
            mode = cdms2.getAutoBounds()
            cdms2.setAutoBounds("on")
            data = MV2.array(data)
            data.getAxis(-1).getBounds()
            cdms2.setAutoBounds(mode)

        while data.rank() > 1:
            data = data[0]

        # ok now we have a good x and a good data
        nbars = len(data)

        # create the primitive
        fill = x.createfillarea()
        line = x.createline()
        fill.viewport = [
            template.data.x1, template.data.x2, template.data.y1,
            template.data.y2
        ]
        line.viewport = [
            template.data.x1, template.data.x2, template.data.y1,
            template.data.y2
        ]
        axb = data.getAxis(0).getBounds()
        xmn, xmx = vcs.minmax(axb)
        ymn, ymx = vcs.minmax(data)

        xmn, xmx, ymn, ymx = self.prep_plot(xmn, xmx, ymn, ymx)

        fill.worldcoordinate = [xmn, xmx, ymn, ymx]
        line.worldcoordinate = [xmn, xmx, ymn, ymx]

        styles = []
        cols = []
        indices = []
        lt = []
        lw = []
        lc = []
        xs = []
        ys = []

        for i in range(nbars):
            if i < len(self.fillareastyles):
                styles.append(self.fillareastyles[i])
            else:
                styles.append(self.fillareastyles[-1])
            if i < len(self.fillareacolors):
                cols.append(self.fillareacolors[i])
            else:
                cols.append(self.fillareacolors[-1])
            if i < len(self.fillareaindices):
                indices.append(self.fillareaindices[i])
            else:
                indices.append(self.fillareaindices[-1])
            if i < len(self.line):
                lt.append(self.line[i])
            else:
                lt.append(self.line[-1])
            if i < len(self.linewidth):
                lw.append(self.linewidth[i])
            else:
                lw.append(self.linewidth[-1])
            if i < len(self.line):
                lc.append(self.linecolors[i])
            else:
                lc.append(self.linecolors[-1])

            xs.append([axb[i][0], axb[i][1], axb[i][1], axb[i][0], axb[i][0]])
            ys.append([0, 0, data[i], data[i], 0])

        fill.style = styles
        fill.x = xs
        fill.y = ys
        fill.style
        fill.index = indices
        fill.color = cols
        line.x = xs
        line.y = ys
        line.type = lt
        line.width = lw
        line.color = lc

        displays = []
        displays.append(x.plot(fill, bg=bg))
        displays.append(x.plot(line, bg=bg))

        x.worldcoordinate = fill.worldcoordinate
        dsp = template.plot(data, self, bg=bg)
        for d in dsp:
            displays.append(d)

        self.restore()
        return displays