def nearest_neighbour(query_sequence, training_set, params): distances = [ cdtw_sakoe_chiba(query_sequence, training_sequence, params['r']) for training_sequence in training_set ] best_seq_index = argmin(distances) return best_seq_index, distances
def test_cdtw(): """Simple test to run cDTW with different values of r""" print("\n\n== Testing cDTW ==\n") a = array([1, 2, 2, 2, 3, 4, 5, 6, 7], dtype="float64") b = array([1, 2, 3, 4, 5, 6, 6, 6, 7], dtype="float64") results = [(r, cdtw_sakoe_chiba(a, b, r)) for r in [0, 1, 2]] print("a: {0}".format(a)) print("b: {0}".format(b)) print("cDTW results: (should be 8, 4, and 0)") for result in results: print("r={0[0]}: {0[1]}".format(result)) print("\n")
def test_cdtw(): """Simple test to run cDTW with different values of r""" print("\n\n== Testing cDTW ==\n") a = array([1,2,2,2,3,4,5,6,7], dtype="float64") b = array([1,2,3,4,5,6,6,6,7], dtype="float64") results = [(r, cdtw_sakoe_chiba(a, b, r)) for r in [0,1,2]] print("a: {0}".format(a)) print("b: {0}".format(b)) print("cDTW results: (should be 8, 4, and 0)") for result in results: print("r={0[0]}: {0[1]}".format(result)) print("\n")
def metric(x, y): return cdtw_sakoe_chiba(x, y, 2)
def nearest_neighbour(query_sequence, training_set, params): distances = [cdtw_sakoe_chiba(query_sequence, training_sequence, params['r']) for training_sequence in training_set] best_seq_index = argmin(distances) return best_seq_index, distances