示例#1
0
def cooling_calculations_of_DC_buildings(locator, master_to_slave_vars, ntwFeat, prices, lca, config, reduced_timesteps_flag):
    """
    Computes the parameters for the cooling of the complete DCN

    :param locator: path to res folder
    :param ntwFeat: network features
    :param prices: Prices imported from the database
    :type locator: string
    :type ntwFeat: class
    :type prices: class
    :return: costs, co2, prim
    :rtype: tuple
    """

    ############# Recover the cooling needs
    # Cooling demands in a neighborhood are divided into three categories currently. They are
    # 1. Space Cooling in buildings
    # 2. Data center Cooling
    # 3. Refrigeration Needs
    # Data center cooling can also be done by recovering the heat and heating other demands during the same time
    # whereas Space cooling and refrigeration needs are to be provided by District Cooling Network or decentralized cooling
    # Currently, all the buildings are assumed to be connected to DCN
    # In the following code, the cooling demands of Space cooling and refrigeration are first satisfied by using Lake and VCC
    # This is then followed by checking of the Heat recovery from Data Centre, if it is allowed, then the corresponding
    # cooling demand is ignored. If not, the corresponding coolind demand is also satisfied by DCN.

    t0 = time.time()
    DCN_barcode = master_to_slave_vars.DCN_barcode
    print ('Cooling Main is Running')

    # Space cooling previously aggregated in the substation routine
    if master_to_slave_vars.WasteServersHeatRecovery == 1:
        df = pd.read_csv(locator.get_optimization_network_data_folder(master_to_slave_vars.network_data_file_cooling),
                     usecols=["T_DCNf_space_cooling_and_refrigeration_sup_K", "T_DCNf_space_cooling_and_refrigeration_re_K",
                              "mdot_cool_space_cooling_and_refrigeration_netw_all_kgpers"])
        df = df.fillna(0)
        T_sup_K = df['T_DCNf_space_cooling_and_refrigeration_sup_K'].values
        T_re_K = df['T_DCNf_space_cooling_and_refrigeration_re_K'].values
        mdot_kgpers = df['mdot_cool_space_cooling_and_refrigeration_netw_all_kgpers'].values
    else:
        df = pd.read_csv(locator.get_optimization_network_data_folder(master_to_slave_vars.network_data_file_cooling),
                     usecols=["T_DCNf_space_cooling_data_center_and_refrigeration_sup_K",
                              "T_DCNf_space_cooling_data_center_and_refrigeration_re_K",
                              "mdot_cool_space_cooling_data_center_and_refrigeration_netw_all_kgpers"])
        df = df.fillna(0)
        T_sup_K = df['T_DCNf_space_cooling_data_center_and_refrigeration_sup_K'].values
        T_re_K = df['T_DCNf_space_cooling_data_center_and_refrigeration_re_K'].values
        mdot_kgpers = df['mdot_cool_space_cooling_data_center_and_refrigeration_netw_all_kgpers'].values
    DCN_operation_parameters = df.fillna(0)
    DCN_operation_parameters_array = DCN_operation_parameters.values

    Qc_DCN_W = np.array(
        pd.read_csv(locator.get_optimization_network_data_folder(master_to_slave_vars.network_data_file_cooling),
                    usecols=["Q_DCNf_space_cooling_and_refrigeration_W",
                             "Q_DCNf_space_cooling_data_center_and_refrigeration_W"]))  # importing the cooling demands of DCN (space cooling + refrigeration)
    # Data center cooling, (treated separately for each building)
    df = pd.read_csv(locator.get_total_demand(), usecols=["Name", "Qcdata_sys_MWhyr"])
    arrayData = np.array(df)

    # total cooling requirements based on the Heat Recovery Flag
    Q_cooling_req_W = np.zeros(8760)
    if master_to_slave_vars.WasteServersHeatRecovery == 0:
        for hour in range(8760):  # summing cooling loads of space cooling, refrigeration and data center
            Q_cooling_req_W[hour] = Qc_DCN_W[hour][1]
    else:
        for hour in range(8760):  # only including cooling loads of space cooling and refrigeration
            Q_cooling_req_W[hour] = Qc_DCN_W[hour][0]

    ############# Recover the heat already taken from the Lake by the heat pumps
    if config.district_heating_network:
        try:
            dfSlave = pd.read_csv(
                locator.get_optimization_slave_heating_activation_pattern(master_to_slave_vars.individual_number,
                                                                          master_to_slave_vars.generation_number),
                usecols=["Q_coldsource_HPLake_W"])
            Q_Lake_Array_W = np.array(dfSlave)

        except:
            Q_Lake_Array_W = [0]
    else:
        Q_Lake_Array_W = [0]

    ### input parameters
    Qc_VCC_max_W = master_to_slave_vars.VCC_cooling_size_W
    Qc_ACH_max_W = master_to_slave_vars.Absorption_chiller_size_W

    T_ground_K = calculate_ground_temperature(locator, config)

    # sizing cold water storage tank
    if master_to_slave_vars.Storage_cooling_size_W > 0:
        Qc_tank_discharge_peak_W = master_to_slave_vars.Storage_cooling_size_W
        Qc_tank_charge_max_W = (Qc_VCC_max_W + Qc_ACH_max_W) * 0.8  # assume reduced capacity when Tsup is lower
        peak_hour = np.argmax(Q_cooling_req_W)
        area_HEX_tank_discharege_m2, UA_HEX_tank_discharge_WperK, \
        area_HEX_tank_charge_m2, UA_HEX_tank_charge_WperK, \
        V_tank_m3 = storage_tank.calc_storage_tank_properties(DCN_operation_parameters, Qc_tank_charge_max_W,
                                                              Qc_tank_discharge_peak_W, peak_hour, master_to_slave_vars)
    else:
        Qc_tank_discharge_peak_W = 0
        Qc_tank_charge_max_W = 0
        area_HEX_tank_discharege_m2 = 0
        UA_HEX_tank_discharge_WperK = 0
        area_HEX_tank_charge_m2 = 0
        UA_HEX_tank_charge_WperK = 0
        V_tank_m3 = 0

    VCC_cost_data = pd.read_excel(locator.get_supply_systems(config.region), sheetname="Chiller")
    VCC_cost_data = VCC_cost_data[VCC_cost_data['code'] == 'CH3']
    max_VCC_chiller_size = max(VCC_cost_data['cap_max'].values)

    Absorption_chiller_cost_data = pd.read_excel(locator.get_supply_systems(config.region),
                                                 sheetname="Absorption_chiller")
    Absorption_chiller_cost_data = Absorption_chiller_cost_data[Absorption_chiller_cost_data['type'] == ACH_TYPE_DOUBLE]
    max_ACH_chiller_size = max(Absorption_chiller_cost_data['cap_max'].values)


    # deciding the number of chillers and the nominal size based on the maximum chiller size
    Qc_VCC_max_W = Qc_VCC_max_W * (1 + SIZING_MARGIN)
    Qc_ACH_max_W = Qc_ACH_max_W * (1 + SIZING_MARGIN)
    Q_peak_load_W = Q_cooling_req_W.max() * (1 + SIZING_MARGIN)

    Qc_VCC_backup_max_W = (Q_peak_load_W - Qc_ACH_max_W - Qc_VCC_max_W - Qc_tank_discharge_peak_W)

    if Qc_VCC_backup_max_W < 0:
        Qc_VCC_backup_max_W = 0

    if Qc_VCC_max_W <= max_VCC_chiller_size:
        Qnom_VCC_W = Qc_VCC_max_W
        number_of_VCC_chillers = 1
    else:
        number_of_VCC_chillers = int(ceil(Qc_VCC_max_W / max_VCC_chiller_size))
        Qnom_VCC_W = Qc_VCC_max_W / number_of_VCC_chillers

    if Qc_VCC_backup_max_W <= max_VCC_chiller_size:
        Qnom_VCC_backup_W = Qc_VCC_backup_max_W
        number_of_VCC_backup_chillers = 1
    else:
        number_of_VCC_backup_chillers = int(ceil(Qc_VCC_backup_max_W / max_VCC_chiller_size))
        Qnom_VCC_backup_W = Qc_VCC_backup_max_W / number_of_VCC_backup_chillers

    if Qc_ACH_max_W <= max_ACH_chiller_size:
        Qnom_ACH_W = Qc_ACH_max_W
        number_of_ACH_chillers = 1
    else:
        number_of_ACH_chillers = int(ceil(Qc_ACH_max_W / max_ACH_chiller_size))
        Qnom_ACH_W = Qc_ACH_max_W / number_of_ACH_chillers

    limits = {'Qc_VCC_max_W': Qc_VCC_max_W, 'Qc_ACH_max_W': Qc_ACH_max_W, 'Qc_peak_load_W': Qc_tank_discharge_peak_W,
              'Qnom_VCC_W': Qnom_VCC_W, 'number_of_VCC_chillers': number_of_VCC_chillers,
              'Qnom_ACH_W': Qnom_ACH_W, 'number_of_ACH_chillers': number_of_ACH_chillers,
              'Qnom_VCC_backup_W': Qnom_VCC_backup_W, 'number_of_VCC_backup_chillers': number_of_VCC_backup_chillers,
              'Qc_tank_discharge_peak_W': Qc_tank_discharge_peak_W, 'Qc_tank_charge_max_W': Qc_tank_charge_max_W,
              'V_tank_m3': V_tank_m3, 'T_tank_fully_charged_K': T_TANK_FULLY_CHARGED_K,
              'area_HEX_tank_discharge_m2': area_HEX_tank_discharege_m2,
              'UA_HEX_tank_discharge_WperK': UA_HEX_tank_discharge_WperK,
              'area_HEX_tank_charge_m2': area_HEX_tank_charge_m2,
              'UA_HEX_tank_charge_WperK': UA_HEX_tank_charge_WperK}

    ### input variables
    lake_available_cooling = pd.read_csv(locator.get_lake_potential(), usecols=['lake_potential'])
    Qc_available_from_lake_W = np.sum(lake_available_cooling).values[0] + np.sum(Q_Lake_Array_W)
    Qc_from_lake_cumulative_W = 0
    cooling_resource_potentials = {'T_tank_K': T_TANK_FULLY_DISCHARGED_K,
                                   'Qc_avail_from_lake_W': Qc_available_from_lake_W,
                                   'Qc_from_lake_cumulative_W': Qc_from_lake_cumulative_W}

    ############# Output results
    PipeLifeTime = 40.0  # years, Data from A&W
    PipeInterestRate = 0.05  # 5% interest rate
    network_costs_USD = ntwFeat.pipesCosts_DCN_USD * DCN_barcode.count('1') / master_to_slave_vars.total_buildings
    network_costs_a_USD = network_costs_USD * PipeInterestRate * (1+ PipeInterestRate) ** PipeLifeTime / ((1+PipeInterestRate) ** PipeLifeTime - 1)
    costs_a_USD = network_costs_a_USD
    CO2_kgCO2 = 0
    prim_MJ = 0

    nBuild = int(np.shape(arrayData)[0])
    if reduced_timesteps_flag == False:
        start_t = 0
        stop_t = int(np.shape(DCN_operation_parameters)[0])
    else:
        # timesteps in May
        start_t = 2880
        stop_t = 3624
    timesteps = range(start_t, stop_t)

    calfactor_buildings = np.zeros(8760)
    TotalCool = 0
    Qc_from_Lake_W = np.zeros(8760)
    Qc_from_VCC_W = np.zeros(8760)
    Qc_from_ACH_W = np.zeros(8760)
    Qc_from_storage_tank_W = np.zeros(8760)
    Qc_from_VCC_backup_W = np.zeros(8760)

    Qc_req_from_CT_W = np.zeros(8760)
    Qh_req_from_CCGT_W = np.zeros(8760)
    Qh_from_CCGT_W = np.zeros(8760)
    E_gen_CCGT_W = np.zeros(8760)

    opex_var_Lake_USD = np.zeros(8760)
    opex_var_VCC_USD = np.zeros(8760)
    opex_var_ACH_USD = np.zeros(8760)
    opex_var_VCC_backup_USD = np.zeros(8760)
    opex_var_CCGT_USD = np.zeros(8760)
    opex_var_CT_USD = np.zeros(8760)
    E_used_Lake_W = np.zeros(8760)
    E_used_VCC_W = np.zeros(8760)
    E_used_VCC_backup_W = np.zeros(8760)
    E_used_ACH_W = np.zeros(8760)
    E_used_CT_W = np.zeros(8760)
    co2_Lake_kgCO2 = np.zeros(8760)
    co2_VCC_kgCO2 = np.zeros(8760)
    co2_ACH_kgCO2 = np.zeros(8760)
    co2_VCC_backup_kgCO2 = np.zeros(8760)
    co2_CCGT_kgCO2 = np.zeros(8760)
    co2_CT_kgCO2 = np.zeros(8760)
    prim_energy_Lake_MJ = np.zeros(8760)
    prim_energy_VCC_MJ = np.zeros(8760)
    prim_energy_ACH_MJ = np.zeros(8760)
    prim_energy_VCC_backup_MJ = np.zeros(8760)
    prim_energy_CCGT_MJ = np.zeros(8760)
    prim_energy_CT_MJ = np.zeros(8760)
    NG_used_CCGT_W = np.zeros(8760)
    calfactor_total = 0

    for hour in timesteps:  # cooling supply for all buildings excluding cooling loads from data centers
        performance_indicators_output, \
        Qc_supply_to_DCN, calfactor_output, \
        Qc_CT_W, Qh_CHP_ACH_W, \
        cooling_resource_potentials = cooling_resource_activator(mdot_kgpers[hour], T_sup_K[hour], T_re_K[hour],
                                                                 limits, cooling_resource_potentials,
                                                                 T_ground_K[hour], prices, lca, master_to_slave_vars, config, Q_cooling_req_W[hour], locator)

        print (hour)
        # save results for each time-step
        opex_var_Lake_USD[hour] = performance_indicators_output['Opex_var_Lake_USD']
        opex_var_VCC_USD[hour] = performance_indicators_output['Opex_var_VCC_USD']
        opex_var_ACH_USD[hour] = performance_indicators_output['Opex_var_ACH_USD']
        opex_var_VCC_backup_USD[hour] = performance_indicators_output['Opex_var_VCC_backup_USD']
        E_used_Lake_W[hour] = performance_indicators_output['E_used_Lake_W']
        E_used_VCC_W[hour] = performance_indicators_output['E_used_VCC_W']
        E_used_VCC_backup_W[hour] = performance_indicators_output['E_used_VCC_backup_W']
        E_used_ACH_W[hour] = performance_indicators_output['E_used_ACH_W']
        co2_Lake_kgCO2[hour] = performance_indicators_output['CO2_Lake_kgCO2']
        co2_VCC_kgCO2[hour] = performance_indicators_output['CO2_VCC_kgCO2']
        co2_ACH_kgCO2[hour] = performance_indicators_output['CO2_ACH_kgCO2']
        co2_VCC_backup_kgCO2[hour] = performance_indicators_output['CO2_VCC_backup_kgCO2']
        prim_energy_Lake_MJ[hour] = performance_indicators_output['Primary_Energy_Lake_MJ']
        prim_energy_VCC_MJ[hour] = performance_indicators_output['Primary_Energy_VCC_MJ']
        prim_energy_ACH_MJ[hour] = performance_indicators_output['Primary_Energy_ACH_MJ']
        prim_energy_VCC_backup_MJ[hour] = performance_indicators_output['Primary_Energy_VCC_backup_MJ']
        calfactor_buildings[hour] = calfactor_output
        Qc_from_Lake_W[hour] = Qc_supply_to_DCN['Qc_from_Lake_W']
        Qc_from_storage_tank_W[hour] = Qc_supply_to_DCN['Qc_from_Tank_W']
        Qc_from_VCC_W[hour] = Qc_supply_to_DCN['Qc_from_VCC_W']
        Qc_from_ACH_W[hour] = Qc_supply_to_DCN['Qc_from_ACH_W']
        Qc_from_VCC_backup_W[hour] = Qc_supply_to_DCN['Qc_from_backup_VCC_W']
        Qc_req_from_CT_W[hour] = Qc_CT_W
        Qh_req_from_CCGT_W[hour] = Qh_CHP_ACH_W

    if reduced_timesteps_flag:
        reduced_costs_USD = np.sum(opex_var_Lake_USD) + np.sum(opex_var_VCC_USD) + np.sum(opex_var_ACH_USD) + np.sum(opex_var_VCC_backup_USD)
        reduced_CO2_kgCO2 = np.sum(co2_Lake_kgCO2) + np.sum(co2_Lake_kgCO2) + np.sum(co2_ACH_kgCO2) + np.sum(co2_VCC_backup_kgCO2)
        reduced_prim_MJ = np.sum(prim_energy_Lake_MJ) + np.sum(prim_energy_VCC_MJ) + np.sum(prim_energy_ACH_MJ) + np.sum(
        prim_energy_VCC_backup_MJ)

        costs_a_USD += reduced_costs_USD*(8760/(stop_t-start_t))
        CO2_kgCO2 += reduced_CO2_kgCO2*(8760/(stop_t-start_t))
        prim_MJ += reduced_prim_MJ*(8760/(stop_t-start_t))
    else:
        costs_a_USD += np.sum(opex_var_Lake_USD) + np.sum(opex_var_VCC_USD) + np.sum(opex_var_ACH_USD) + np.sum(opex_var_VCC_backup_USD)
        CO2_kgCO2 += np.sum(co2_Lake_kgCO2) + np.sum(co2_Lake_kgCO2) + np.sum(co2_ACH_kgCO2) + np.sum(co2_VCC_backup_kgCO2)
        prim_MJ += np.sum(prim_energy_Lake_MJ) + np.sum(prim_energy_VCC_MJ) + np.sum(prim_energy_ACH_MJ) + np.sum(
            prim_energy_VCC_backup_MJ)


    calfactor_total += np.sum(calfactor_buildings)
    TotalCool += np.sum(Qc_from_Lake_W) + np.sum(Qc_from_VCC_W) + np.sum(Qc_from_ACH_W) + np.sum(Qc_from_VCC_backup_W) + np.sum(Qc_from_storage_tank_W)
    Q_VCC_nom_W = limits['Qnom_VCC_W']
    Q_ACH_nom_W = limits['Qnom_ACH_W']
    Q_VCC_backup_nom_W = limits['Qnom_VCC_backup_W']
    Q_CT_nom_W = np.amax(Qc_req_from_CT_W)
    Qh_req_from_CCGT_max_W = np.amax(Qh_req_from_CCGT_W) # the required heat output from CCGT at peak
    mdot_Max_kgpers = np.amax(DCN_operation_parameters_array[:, 1])  # sizing of DCN network pumps
    Q_GT_nom_W = 0
    ########## Operation of the cooling tower

    if Q_CT_nom_W > 0:
        for hour in timesteps:
            wdot_CT = CTModel.calc_CT(Qc_req_from_CT_W[hour], Q_CT_nom_W)
            opex_var_CT_USD[hour] = (wdot_CT) * lca.ELEC_PRICE
            co2_CT_kgCO2[hour] = (wdot_CT) * lca.EL_TO_CO2 * 3600E-6
            prim_energy_CT_MJ[hour] = (wdot_CT) * lca.EL_TO_OIL_EQ * 3600E-6
            E_used_CT_W[hour] = wdot_CT

        if reduced_timesteps_flag:
            reduced_costs_USD = np.sum(opex_var_CT_USD)
            reduced_CO2_kgCO2 = np.sum(co2_CT_kgCO2)
            reduced_prim_MJ = np.sum(prim_energy_CT_MJ)

            costs_a_USD += reduced_costs_USD * (8760 / (stop_t - start_t))
            CO2_kgCO2 += reduced_CO2_kgCO2 * (8760 / (stop_t - start_t))
            prim_MJ += reduced_prim_MJ * (8760 / (stop_t - start_t))
        else:
            costs_a_USD += np.sum(opex_var_CT_USD)
            CO2_kgCO2 += np.sum(co2_CT_kgCO2)
            prim_MJ += np.sum(prim_energy_CT_MJ)

    ########## Operation of the CCGT
    if Qh_req_from_CCGT_max_W > 0:
        # Sizing of CCGT
        GT_fuel_type = 'NG'  # assumption for scenarios in SG
        Q_GT_nom_sizing_W = Qh_req_from_CCGT_max_W  # starting guess for the size of GT
        Qh_output_CCGT_max_W = 0  # the heat output of CCGT at currently installed size (Q_GT_nom_sizing_W)
        while (Qh_output_CCGT_max_W - Qh_req_from_CCGT_max_W) <= 0:
            Q_GT_nom_sizing_W += 1000  # update GT size
            # get CCGT performance limits and functions at Q_GT_nom_sizing_W
            CCGT_performances = cogeneration.calc_cop_CCGT(Q_GT_nom_sizing_W, ACH_T_IN_FROM_CHP, GT_fuel_type, prices, lca)
            Qh_output_CCGT_max_W = CCGT_performances['q_output_max_W']

        # unpack CCGT performance functions
        Q_GT_nom_W = Q_GT_nom_sizing_W * (1 + SIZING_MARGIN)  # installed CCGT capacity
        CCGT_performances = cogeneration.calc_cop_CCGT(Q_GT_nom_W, ACH_T_IN_FROM_CHP, GT_fuel_type, prices, lca)
        Q_used_prim_W_CCGT_fn = CCGT_performances['q_input_fn_q_output_W']
        cost_per_Wh_th_CCGT_fn = CCGT_performances[
            'fuel_cost_per_Wh_th_fn_q_output_W']  # gets interpolated cost function
        Qh_output_CCGT_min_W = CCGT_performances['q_output_min_W']
        Qh_output_CCGT_max_W = CCGT_performances['q_output_max_W']
        eta_elec_interpol = CCGT_performances['eta_el_fn_q_input']

        for hour in timesteps:
            if Qh_req_from_CCGT_W[hour] > Qh_output_CCGT_min_W:  # operate above minimal load
                if Qh_req_from_CCGT_W[hour] < Qh_output_CCGT_max_W:  # Normal operation Possible within partload regime
                    cost_per_Wh_th = cost_per_Wh_th_CCGT_fn(Qh_req_from_CCGT_W[hour])
                    Q_used_prim_CCGT_W = Q_used_prim_W_CCGT_fn(Qh_req_from_CCGT_W[hour])
                    Qh_from_CCGT_W[hour] = Qh_req_from_CCGT_W[hour].copy()
                    E_gen_CCGT_W[hour] = np.float(eta_elec_interpol(Q_used_prim_CCGT_W)) * Q_used_prim_CCGT_W
                else:
                    raise ValueError('Incorrect CCGT sizing!')
            else:  # operate at minimum load
                cost_per_Wh_th = cost_per_Wh_th_CCGT_fn(Qh_output_CCGT_min_W)
                Q_used_prim_CCGT_W = Q_used_prim_W_CCGT_fn(Qh_output_CCGT_min_W)
                Qh_from_CCGT_W[hour] = Qh_output_CCGT_min_W
                E_gen_CCGT_W[hour] = np.float(eta_elec_interpol(
                    Qh_output_CCGT_max_W)) * Q_used_prim_CCGT_W

            opex_var_CCGT_USD[hour] = cost_per_Wh_th * Qh_from_CCGT_W[hour] - E_gen_CCGT_W[hour] * lca.ELEC_PRICE
            co2_CCGT_kgCO2[hour] = Q_used_prim_CCGT_W * lca.NG_CC_TO_CO2_STD * WH_TO_J / 1.0E6 - E_gen_CCGT_W[hour] * lca.EL_TO_CO2 * 3600E-6
            prim_energy_CCGT_MJ[hour] = Q_used_prim_CCGT_W * lca.NG_CC_TO_OIL_STD * WH_TO_J / 1.0E6 - E_gen_CCGT_W[hour] * lca.EL_TO_OIL_EQ * 3600E-6
            NG_used_CCGT_W[hour] = Q_used_prim_CCGT_W

        if reduced_timesteps_flag:
            reduced_costs_USD = np.sum(opex_var_CCGT_USD)
            reduced_CO2_kgCO2 = np.sum(co2_CCGT_kgCO2)
            reduced_prim_MJ = np.sum(prim_energy_CCGT_MJ)

            costs_a_USD += reduced_costs_USD * (8760 / (stop_t - start_t))
            CO2_kgCO2 += reduced_CO2_kgCO2 * (8760 / (stop_t - start_t))
            prim_MJ += reduced_prim_MJ * (8760 / (stop_t - start_t))
        else:
            costs_a_USD += np.sum(opex_var_CCGT_USD)
            CO2_kgCO2 += np.sum(co2_CCGT_kgCO2)
            prim_MJ += np.sum(prim_energy_CCGT_MJ)

    ########## Add investment costs

    for i in range(limits['number_of_VCC_chillers']):
        Capex_a_VCC_USD, Opex_fixed_VCC_USD, Capex_VCC_USD = VCCModel.calc_Cinv_VCC(Q_VCC_nom_W, locator, config, 'CH3')
        costs_a_USD += Capex_a_VCC_USD + Opex_fixed_VCC_USD

    for i in range(limits['number_of_VCC_backup_chillers']):
        Capex_a_VCC_backup_USD, Opex_fixed_VCC_backup_USD, Capex_VCC_backup_USD = VCCModel.calc_Cinv_VCC(Q_VCC_backup_nom_W, locator, config, 'CH3')
        costs_a_USD += Capex_a_VCC_backup_USD + Opex_fixed_VCC_backup_USD
    master_to_slave_vars.VCC_backup_cooling_size_W = Q_VCC_backup_nom_W * limits['number_of_VCC_backup_chillers']

    for i in range(limits['number_of_ACH_chillers']):
        Capex_a_ACH_USD, Opex_fixed_ACH_USD, Capex_ACH_USD = chiller_absorption.calc_Cinv_ACH(Q_ACH_nom_W, locator, ACH_TYPE_DOUBLE, config)
        costs_a_USD += Capex_a_ACH_USD + Opex_fixed_ACH_USD

    Capex_a_CCGT_USD, Opex_fixed_CCGT_USD, Capex_CCGT_USD = cogeneration.calc_Cinv_CCGT(Q_GT_nom_W, locator, config)
    costs_a_USD += Capex_a_CCGT_USD + Opex_fixed_CCGT_USD

    Capex_a_Tank_USD, Opex_fixed_Tank_USD, Capex_Tank_USD = thermal_storage.calc_Cinv_storage(V_tank_m3, locator, config, 'TES2')
    costs_a_USD += Capex_a_Tank_USD + Opex_fixed_Tank_USD

    Capex_a_CT_USD, Opex_fixed_CT_USD, Capex_CT_USD = CTModel.calc_Cinv_CT(Q_CT_nom_W, locator, config, 'CT1')

    costs_a_USD += Capex_a_CT_USD + Opex_fixed_CT_USD

    Capex_a_pump_USD, Opex_fixed_pump_USD, Opex_var_pump_USD, Capex_pump_USD = PumpModel.calc_Ctot_pump(master_to_slave_vars, ntwFeat, locator, lca, config)
    costs_a_USD += Capex_a_pump_USD + Opex_fixed_pump_USD + Opex_var_pump_USD

    network_data = pd.read_csv(locator.get_optimization_network_data_folder(master_to_slave_vars.network_data_file_cooling))

    date = network_data.DATE.values
    results = pd.DataFrame({"DATE": date,
                            "Q_total_cooling_W": Q_cooling_req_W,
                            "Opex_var_Lake_USD": opex_var_Lake_USD,
                            "Opex_var_VCC_USD": opex_var_VCC_USD,
                            "Opex_var_ACH_USD": opex_var_ACH_USD,
                            "Opex_var_VCC_backup_USD": opex_var_VCC_backup_USD,
                            "Opex_var_CT_USD": opex_var_CT_USD,
                            "Opex_var_CCGT_USD": opex_var_CCGT_USD,
                            "E_used_Lake_W": E_used_Lake_W,
                            "E_used_VCC_W": E_used_VCC_W,
                            "E_used_VCC_backup_W": E_used_VCC_backup_W,
                            "E_used_ACH_W": E_used_ACH_W,
                            "E_used_CT_W": E_used_CT_W,
                            "NG_used_CCGT_W": NG_used_CCGT_W,
                            "CO2_from_using_Lake": co2_Lake_kgCO2,
                            "CO2_from_using_VCC": co2_VCC_kgCO2,
                            "CO2_from_using_ACH": co2_ACH_kgCO2,
                            "CO2_from_using_VCC_backup": co2_VCC_backup_kgCO2,
                            "CO2_from_using_CT": co2_CT_kgCO2,
                            "CO2_from_using_CCGT": co2_CCGT_kgCO2,
                            "Primary_Energy_from_Lake": prim_energy_Lake_MJ,
                            "Primary_Energy_from_VCC": prim_energy_VCC_MJ,
                            "Primary_Energy_from_ACH": prim_energy_ACH_MJ,
                            "Primary_Energy_from_VCC_backup": prim_energy_VCC_backup_MJ,
                            "Primary_Energy_from_CT": prim_energy_CT_MJ,
                            "Primary_Energy_from_CCGT": prim_energy_CCGT_MJ,
                            "Q_from_Lake_W": Qc_from_Lake_W,
                            "Q_from_VCC_W": Qc_from_VCC_W,
                            "Q_from_ACH_W": Qc_from_ACH_W,
                            "Q_from_VCC_backup_W": Qc_from_VCC_backup_W,
                            "Q_from_storage_tank_W": Qc_from_storage_tank_W,
                            "Qc_CT_associated_with_all_chillers_W": Qc_req_from_CT_W,
                            "Qh_CCGT_associated_with_absorption_chillers_W": Qh_from_CCGT_W,
                            "E_gen_CCGT_associated_with_absorption_chillers_W": E_gen_CCGT_W
                            })

    results.to_csv(locator.get_optimization_slave_cooling_activation_pattern(master_to_slave_vars.individual_number,
                                                                             master_to_slave_vars.generation_number),
                   index=False)
    ########### Adjust and add the pumps for filtering and pre-treatment of the water
    calibration = calfactor_total / 50976000

    extraElec = (127865400 + 85243600) * calibration
    costs_a_USD += extraElec * lca.ELEC_PRICE
    CO2_kgCO2 += extraElec * lca.EL_TO_CO2 * 3600E-6
    prim_MJ += extraElec * lca.EL_TO_OIL_EQ * 3600E-6
    # Converting costs into float64 to avoid longer values
    costs_a_USD = np.float64(costs_a_USD)
    CO2_kgCO2 = np.float64(CO2_kgCO2)
    prim_MJ = np.float64(prim_MJ)

    # Capex_a and Opex_fixed
    results = pd.DataFrame({"Capex_a_VCC_USD": [Capex_a_VCC_USD],
                            "Opex_fixed_VCC_USD": [Opex_fixed_VCC_USD],
                            "Capex_a_VCC_backup_USD": [Capex_a_VCC_backup_USD],
                            "Opex_fixed_VCC_backup_USD": [Opex_fixed_VCC_backup_USD],
                            "Capex_a_ACH_USD": [Capex_a_ACH_USD],
                            "Opex_fixed_ACH_USD": [Opex_fixed_ACH_USD],
                            "Capex_a_CCGT_USD": [Capex_a_CCGT_USD],
                            "Opex_fixed_CCGT_USD": [Opex_fixed_CCGT_USD],
                            "Capex_a_Tank_USD": [Capex_a_Tank_USD],
                            "Opex_fixed_Tank_USD": [Opex_fixed_Tank_USD],
                            "Capex_a_CT_USD": [Capex_a_CT_USD],
                            "Opex_fixed_CT_USD": [Opex_fixed_CT_USD],
                            "Capex_a_pump_USD": [Capex_a_pump_USD],
                            "Opex_fixed_pump_USD": [Opex_fixed_pump_USD],
                            "Opex_var_pump_USD": [Opex_var_pump_USD],
                            "Capex_VCC_USD": [Capex_VCC_USD],
                            "Capex_VCC_backup_USD": [Capex_VCC_backup_USD],
                            "Capex_ACH_USD": [Capex_ACH_USD],
                            "Capex_CCGT_USD": [Capex_CCGT_USD],
                            "Capex_Tank_USD": [Capex_Tank_USD],
                            "Capex_CT_USD": [Capex_CT_USD],
                            "Capex_pump_USD": [Capex_pump_USD]
                            })

    results.to_csv(locator.get_optimization_slave_investment_cost_detailed_cooling(master_to_slave_vars.individual_number,
                                                                             master_to_slave_vars.generation_number),
                   index=False)

    # print " Cooling main done (", round(time.time()-t0, 1), " seconds used for this task)"

    # print ('Cooling costs = ' + str(costs))
    # print ('Cooling CO2 = ' + str(CO2))
    # print ('Cooling Eprim = ' + str(prim))

    return (costs_a_USD, CO2_kgCO2, prim_MJ)
示例#2
0
def addCosts(indCombi, buildList, locator, dicoSupply, Q_uncovered_design_W,
             Q_uncovered_annual_W, solarFeat, ntwFeat, gv):
    """
    Computes additional costs / GHG emisions / primary energy needs
    for the individual
    addCosts = additional costs
    addCO2 = GHG emissions
    addPrm = primary energy needs

    :param indCombi: parameter indicating if the building is connected or not
    :param buildList: list of buildings in the district
    :param locator: input locator set to scenario
    :param dicoSupply: class containing the features of a specific individual
    :param Q_uncovered_design_W: hourly max of the heating uncovered demand
    :param Q_uncovered_annual_W: total heating uncovered
    :param solarFeat: solar features
    :param ntwFeat: network features
    :param gv: global variables
    :type indCombi: string
    :type buildList: list
    :type locator: string
    :type dicoSupply: class
    :type Q_uncovered_design_W: float
    :type Q_uncovered_annual_W: float
    :type solarFeat: class
    :type ntwFeat: class
    :type gv: class

    :return: returns the objectives addCosts, addCO2, addPrim
    :rtype: tuple
    """
    addCosts = 0
    addCO2 = 0
    addPrim = 0
    nBuildinNtw = 0

    # Add the features from the disconnected buildings
    print "\n COSTS FROM DISCONNECTED BUILDINGS"
    os.chdir(locator.get_optimization_disconnected_folder())
    CostDiscBuild = 0
    CO2DiscBuild = 0
    PrimDiscBuild = 0
    FurnaceInvCost = 0
    CCInvCost = 0
    BoilerBInvCost = 0
    BoilerPInvCost = 0
    HPLakeInvC = 0
    HPSewInvC = 0
    GHPInvC = 0
    PVInvC = 0
    SCInvC = 0
    PVTInvC = 0
    BoilerAddInvC = 0
    StorageHEXCost = 0
    StorageHPCost = 0
    StorageInvC = 0
    NetworkCost = 0
    SubstHEXCost = 0
    PVTHEXCost = 0
    SCHEXCost = 0
    pumpCosts = 0
    GasConnectionInvCost = 0

    for (index, building_name) in zip(indCombi, buildList):
        if index == "0":
            discFileName = "DiscOp_" + building_name + "_result.csv"
            df = pd.read_csv(discFileName)
            dfBest = df[df["Best configuration"] == 1]
            CostDiscBuild += dfBest["Total Costs [CHF]"].iloc[0]  # [CHF]
            CO2DiscBuild += dfBest["CO2 Emissions [kgCO2-eq]"].iloc[
                0]  # [kg CO2]
            PrimDiscBuild += dfBest["Primary Energy Needs [MJoil-eq]"].iloc[
                0]  # [MJ-oil-eq]

            print dfBest["Total Costs [CHF]"].iloc[
                0], building_name, "disconnected"

        else:
            nBuildinNtw += 1

    addCosts += CostDiscBuild
    addCO2 += CO2DiscBuild
    addPrim += PrimDiscBuild

    # Add the features for the distribution

    if indCombi.count("1") > 0:
        os.chdir(locator.get_optimization_slave_results_folder())

        print " \n MACHINERY COSTS"
        # Add the investment costs of the energy systems
        # Furnace
        if dicoSupply.Furnace_on == 1:
            P_design_W = dicoSupply.Furnace_Q_max

            fNameSlavePP = locator.get_optimization_slave_pp_activation_pattern(
                dicoSupply.configKey)
            dfFurnace = pd.read_csv(fNameSlavePP, usecols=["Q_Furnace_W"])
            arrayFurnace_W = np.array(dfFurnace)

            Q_annual_W = 0
            for i in range(int(np.shape(arrayFurnace_W)[0])):
                Q_annual_W += arrayFurnace_W[i][0]

            FurnaceInvCost = furnace.calc_Cinv_furnace(P_design_W, Q_annual_W,
                                                       gv)
            addCosts += FurnaceInvCost

            print furnace.calc_Cinv_furnace(P_design_W, Q_annual_W,
                                            gv), " Furnace"

        # CC
        if dicoSupply.CC_on == 1:
            CC_size_W = dicoSupply.CC_GT_SIZE
            CCInvCost = chp.calc_Cinv_CCT(CC_size_W, gv)
            addCosts += CCInvCost
            print chp.calc_Cinv_CCT(CC_size_W, gv), " CC"

        # Boiler Base
        if dicoSupply.Boiler_on == 1:
            Q_design_W = dicoSupply.Boiler_Q_max

            fNameSlavePP = locator.get_optimization_slave_pp_activation_pattern(
                dicoSupply.configKey)
            dfBoilerBase = pd.read_csv(fNameSlavePP,
                                       usecols=["Q_BoilerBase_W"])
            arrayBoilerBase_W = np.array(dfBoilerBase)

            Q_annual_W = 0
            for i in range(int(np.shape(arrayBoilerBase_W)[0])):
                Q_annual_W += arrayBoilerBase_W[i][0]

            BoilerBInvCost = boiler.calc_Cinv_boiler(Q_design_W, Q_annual_W,
                                                     gv)
            addCosts += BoilerBInvCost
            print boiler.calc_Cinv_boiler(Q_design_W, Q_annual_W,
                                          gv), " Boiler Base "

        # Boiler Peak
        if dicoSupply.BoilerPeak_on == 1:
            Q_design_W = dicoSupply.BoilerPeak_Q_max

            fNameSlavePP = locator.get_optimization_slave_pp_activation_pattern(
                dicoSupply.configKey)
            dfBoilerPeak = pd.read_csv(fNameSlavePP,
                                       usecols=["Q_BoilerPeak_W"])
            arrayBoilerPeak_W = np.array(dfBoilerPeak)

            Q_annual_W = 0
            for i in range(int(np.shape(arrayBoilerPeak_W)[0])):
                Q_annual_W += arrayBoilerPeak_W[i][0]
            BoilerPInvCost = boiler.calc_Cinv_boiler(Q_design_W, Q_annual_W,
                                                     gv)
            addCosts += BoilerPInvCost
            print boiler.calc_Cinv_boiler(Q_design_W, Q_annual_W,
                                          gv), " Boiler Peak"

        # HP Lake
        if dicoSupply.HP_Lake_on == 1:
            HP_Size_W = dicoSupply.HPLake_maxSize
            HPLakeInvC = hp.calc_Cinv_HP(HP_Size_W, gv)
            addCosts += HPLakeInvC
            print hp.calc_Cinv_HP(HP_Size_W, gv), " HP Lake"

        # HP Sewage
        if dicoSupply.HP_Sew_on == 1:
            HP_Size_W = dicoSupply.HPSew_maxSize
            HPSewInvC = hp.calc_Cinv_HP(HP_Size_W, gv)
            addCosts += HPSewInvC
            print hp.calc_Cinv_HP(HP_Size_W, gv), "HP Sewage"

        # GHP
        if dicoSupply.GHP_on == 1:
            fNameSlavePP = locator.get_optimization_slave_pp_activation_pattern(
                dicoSupply.configKey)
            dfGHP = pd.read_csv(fNameSlavePP, usecols=["E_GHP_req_W"])
            arrayGHP_W = np.array(dfGHP)

            GHP_Enom_W = np.amax(arrayGHP_W)
            GHPInvC = hp.calc_Cinv_GHP(GHP_Enom_W, gv) * gv.EURO_TO_CHF
            addCosts += GHPInvC
            print hp.calc_Cinv_GHP(GHP_Enom_W, gv) * gv.EURO_TO_CHF, " GHP"

        # Solar technologies

        PV_peak_kW = dicoSupply.SOLAR_PART_PV * solarFeat.A_PV_m2 * gv.nPV  #kW
        PVInvC = pv.calc_Cinv_pv(PV_peak_kW)
        addCosts += PVInvC
        print pv.calc_Cinv_pv(PV_peak_kW), "PV peak"

        SC_area_m2 = dicoSupply.SOLAR_PART_SC * solarFeat.A_SC_m2
        SCInvC = stc.calc_Cinv_SC(SC_area_m2, gv)
        addCosts += SCInvC
        print stc.calc_Cinv_SC(SC_area_m2, gv), "SC area"

        PVT_peak_kW = dicoSupply.SOLAR_PART_PVT * solarFeat.A_PVT_m2 * gv.nPVT  #kW
        PVTInvC = pvt.calc_Cinv_PVT(PVT_peak_kW, gv)
        addCosts += PVTInvC
        print pvt.calc_Cinv_PVT(PVT_peak_kW, gv), "PVT peak"

        # Back-up boiler
        BoilerAddInvC = boiler.calc_Cinv_boiler(Q_uncovered_design_W,
                                                Q_uncovered_annual_W, gv)
        addCosts += BoilerAddInvC
        print boiler.calc_Cinv_boiler(Q_uncovered_design_W,
                                      Q_uncovered_annual_W,
                                      gv), "backup boiler"

        # Hex and HP for Heat recovery
        print "\n STORAGE PART COSTS"
        if dicoSupply.WasteServersHeatRecovery == 1:
            df = pd.read_csv(os.path.join(
                locator.get_optimization_network_results_folder(),
                dicoSupply.NETWORK_DATA_FILE),
                             usecols=["Qcdata_netw_total_kWh"])
            array = np.array(df)
            Q_HEX_max_kWh = np.amax(array)
            StorageHEXCost += hex.calc_Cinv_HEX(Q_HEX_max_kWh, gv)

            print hex.calc_Cinv_HEX(Q_HEX_max_kWh, gv), "Hex for data center"

            df = pd.read_csv(
                locator.get_optimization_slave_storage_operation_data(
                    dicoSupply.configKey),
                usecols=["HPServerHeatDesignArray_kWh"])
            array = np.array(df)
            Q_HP_max_kWh = np.amax(array)
            StorageHEXCost += hp.calc_Cinv_HP(Q_HP_max_kWh, gv)
            print hp.calc_Cinv_HP(Q_HP_max_kWh, gv), "HP for data center"

        if dicoSupply.WasteCompressorHeatRecovery == 1:
            df = pd.read_csv(os.path.join(
                locator.get_optimization_network_results_folder(),
                dicoSupply.NETWORK_DATA_FILE),
                             usecols=["Ecaf_netw_total_kWh"])
            array = np.array(df)
            Q_HEX_max_kWh = np.amax(array)

            StorageHEXCost += hex.calc_Cinv_HEX(Q_HEX_max_kWh, gv)
            print hex.calc_Cinv_HEX(Q_HEX_max_kWh,
                                    gv), "Hex for compressed air"

            df = pd.read_csv(
                locator.get_optimization_slave_storage_operation_data(
                    dicoSupply.configKey),
                usecols=["HPCompAirDesignArray_kWh"])
            array = np.array(df)
            Q_HP_max_kWh = np.amax(array)

            StorageHEXCost += hp.calc_Cinv_HP(Q_HP_max_kWh, gv)
            print hp.calc_Cinv_HP(Q_HP_max_kWh, gv), "HP for compressed air"
        addCosts += StorageHEXCost

        # Heat pump solar to storage
        df = pd.read_csv(
            locator.get_optimization_slave_storage_operation_data(
                dicoSupply.configKey),
            usecols=["HPScDesignArray_Wh", "HPpvt_designArray_Wh"])
        array = np.array(df)
        Q_HP_max_PVT_Wh = np.amax(array[:, 1])
        QhpMax_SC_Wh = np.amax(array[:, 0])

        StorageHPCost += hp.calc_Cinv_HP(Q_HP_max_PVT_Wh, gv)
        print hp.calc_Cinv_HP(Q_HP_max_PVT_Wh, gv), "HP for PVT"

        StorageHPCost += hp.calc_Cinv_HP(QhpMax_SC_Wh, gv)
        print hp.calc_Cinv_HP(QhpMax_SC_Wh, gv), "HP for SC"

        # HP for storage operation
        df = pd.read_csv(locator.get_optimization_slave_storage_operation_data(
            dicoSupply.configKey),
                         usecols=[
                             "E_aux_ch_W", "E_aux_dech_W",
                             "Q_from_storage_used_W", "Q_to_storage_W"
                         ])
        array = np.array(df)
        Q_HP_max_storage_W = 0
        for i in range(gv.DAYS_IN_YEAR * gv.HOURS_IN_DAY):
            if array[i][0] > 0:
                Q_HP_max_storage_W = max(Q_HP_max_storage_W,
                                         array[i][3] + array[i][0])
            elif array[i][1] > 0:
                Q_HP_max_storage_W = max(Q_HP_max_storage_W,
                                         array[i][2] + array[i][1])

        StorageHPCost += hp.calc_Cinv_HP(Q_HP_max_storage_W, gv)
        addCosts += StorageHPCost

        print hp.calc_Cinv_HP(Q_HP_max_storage_W, gv), "HP for storage"

        # Storage
        df = pd.read_csv(locator.get_optimization_slave_storage_operation_data(
            dicoSupply.configKey),
                         usecols=["Storage_Size_m3"],
                         nrows=1)
        StorageVol_m3 = np.array(df)[0][0]
        StorageInvC += storage.calc_Cinv_storage(StorageVol_m3, gv)
        addCosts += StorageInvC
        print storage.calc_Cinv_storage(StorageVol_m3, gv), "Storage Costs"

        # Costs from distribution configuration
        print "\n COSTS FROM NETWORK CONFIGURATION"
        if gv.ZernezFlag == 1:
            NetworkCost += network.calc_Cinv_network_linear(
                gv.NetworkLengthZernez, gv) * nBuildinNtw / len(buildList)
        else:
            NetworkCost += ntwFeat.pipesCosts_DHN * nBuildinNtw / len(
                buildList)
        addCosts += NetworkCost
        print ntwFeat.pipesCosts_DHN * nBuildinNtw / len(
            buildList), "Pipes Costs"

        # HEX (1 per building in ntw)
        for (index, building_name) in zip(indCombi, buildList):
            if index == "1":
                df = pd.read_csv(
                    locator.get_optimization_substations_results_file(
                        building_name),
                    usecols=["Q_dhw_W", "Q_heating_W"])
                subsArray = np.array(df)

                Q_max_W = np.amax(subsArray[:, 0] + subsArray[:, 1])
                SubstHEXCost += hex.calc_Cinv_HEX(Q_max_W, gv)
                print hex.calc_Cinv_HEX(Q_max_W, gv), "Hex", building_name
        addCosts += SubstHEXCost

        # HEX for solar
        roof_area_m2 = np.array(
            pd.read_csv(locator.get_total_demand(), usecols=["Aroof_m2"]))

        areaAvail = 0
        for i in range(len(indCombi)):
            index = indCombi[i]
            if index == "1":
                areaAvail += roof_area_m2[i][0]

        for i in range(len(indCombi)):
            index = indCombi[i]
            if index == "1":
                share = roof_area_m2[i][0] / areaAvail
                #print share, "solar area share", buildList[i]

                Q_max_SC_Wh = solarFeat.Q_nom_SC_Wh * dicoSupply.SOLAR_PART_SC * share
                SCHEXCost += hex.calc_Cinv_HEX(Q_max_SC_Wh, gv)
                print hex.calc_Cinv_HEX(Q_max_SC_Wh,
                                        gv), "Hex SC", buildList[i]

                Q_max_PVT_Wh = solarFeat.Q_nom_PVT_Wh * dicoSupply.SOLAR_PART_PVT * share
                PVTHEXCost += hex.calc_Cinv_HEX(Q_max_PVT_Wh, gv)
                print hex.calc_Cinv_HEX(Q_max_PVT_Wh,
                                        gv), "Hex PVT", buildList[i]
        addCosts += SCHEXCost
        addCosts += PVTHEXCost

        print addCosts, "addCosts in extraCostsMain"
        # Pump operation costs
        pumpCosts = pumps.calc_Ctot_pump(
            dicoSupply, buildList,
            locator.get_optimization_network_results_folder(), ntwFeat, gv)
        addCosts += pumpCosts
        print pumpCosts, "Pump Operation costs in extraCostsMain\n"

    # import gas consumption data from:

    if indCombi.count("1") > 0:
        # import gas consumption data from:
        E_gas_PrimaryDataframe_W = pd.read_csv(
            locator.get_optimization_slave_primary_energy_by_source(
                dicoSupply.configKey),
            usecols=["E_gas_PrimaryPeakPower_W"])
        E_gas_primary_peak_power_W = float(np.array(E_gas_PrimaryDataframe_W))
        GasConnectionInvCost = ngas.calc_Cinv_gas(E_gas_primary_peak_power_W,
                                                  gv)
    else:
        GasConnectionInvCost = 0.0

    addCosts += GasConnectionInvCost
    # Save data
    results = pd.DataFrame({
        "SCInvC": [SCInvC],
        "PVTInvC": [PVTInvC],
        "BoilerAddInvC": [BoilerAddInvC],
        "StorageHEXCost": [StorageHEXCost],
        "StorageHPCost": [StorageHPCost],
        "StorageInvC": [StorageInvC],
        "StorageCostSum": [StorageInvC + StorageHPCost + StorageHEXCost],
        "NetworkCost": [NetworkCost],
        "SubstHEXCost": [SubstHEXCost],
        "DHNInvestCost": [addCosts - CostDiscBuild],
        "PVTHEXCost": [PVTHEXCost],
        "CostDiscBuild": [CostDiscBuild],
        "CO2DiscBuild": [CO2DiscBuild],
        "PrimDiscBuild": [PrimDiscBuild],
        "FurnaceInvCost": [FurnaceInvCost],
        "BoilerBInvCost": [BoilerBInvCost],
        "BoilerPInvCost": [BoilerPInvCost],
        "HPLakeInvC": [HPLakeInvC],
        "HPSewInvC": [HPSewInvC],
        "SCHEXCost": [SCHEXCost],
        "pumpCosts": [pumpCosts],
        "SumInvestCost": [addCosts],
        "GasConnectionInvCa": [GasConnectionInvCost]
    })
    results.to_csv(locator.get_optimization_slave_investment_cost_detailed(
        dicoSupply.configKey),
                   sep=',')

    return (addCosts, addCO2, addPrim)
def addCosts(indCombi, buildList, locator, dicoSupply, QUncoveredDesign, QUncoveredAnnual, solarFeat, ntwFeat, gv):
    """
    Computes additional costs / GHG emisions / primary energy needs
    for the individual
    
    Parameters
    ----------
    indCombi : string
        with 0 if disconnected building, 1 if connected
    buildList : list
        list of buildings in the district
    locator : string
        path to folders
    dicoSupply : class context
        with the features of the specific individual
    QuncoveredDesign : float
        hourly max of the heating uncovered demand
    QuncoveredAnnual : float
        total heating uncovered
    solarFeat / ntwFeat : class solarFeatures / ntwFeatures
    
    Returns
    -------
    (addCosts, addCO2, addPrim) : tuple
    
    """
    addCosts = 0
    addCO2 = 0
    addPrim = 0
    nBuildinNtw = 0
    
    # Add the features from the disconnected buildings
    print "\n COSTS FROM DISCONNECTED BUILDINGS"
    os.chdir(locator.pathDiscRes)
    CostDiscBuild = 0
    CO2DiscBuild = 0
    PrimDiscBuild = 0
    FurnaceInvCost = 0
    CCInvCost = 0
    BoilerBInvCost = 0
    BoilerPInvCost = 0 
    HPLakeInvC = 0
    HPSewInvC = 0
    GHPInvC = 0
    PVInvC = 0
    SCInvC = 0
    PVTInvC = 0
    BoilerAddInvC = 0
    StorageHEXCost = 0
    StorageHPCost = 0
    StorageInvC = 0
    NetworkCost = 0
    SubstHEXCost = 0
    PVTHEXCost = 0
    SCHEXCost = 0
    pumpCosts = 0
    GasConnectionInvCost = 0 
    
    for (index, buildName) in zip(indCombi, buildList):
        if index == "0":
            discFileName = "DiscOp_" + buildName + "_result.csv"
            df = pd.read_csv(discFileName)
            dfBest = df[df["Best configuration"] == 1]
            CostDiscBuild += dfBest["Total Costs [CHF]"].iloc[0] # [CHF]
            CO2DiscBuild += dfBest["CO2 Emissions [kgCO2-eq]"].iloc[0] # [kg CO2]
            PrimDiscBuild += dfBest["Primary Energy Needs [MJoil-eq]"].iloc[0] # [MJ-oil-eq]

            print  dfBest["Total Costs [CHF]"].iloc[0], buildName, "disconnected"

        else:
            nBuildinNtw += 1
    
    addCosts += CostDiscBuild
    addCO2 += CO2DiscBuild
    addPrim += PrimDiscBuild
    
    # Add the features for the network

    if indCombi.count("1") > 0:
        os.chdir(locator.pathSlaveRes)
        
        print " \n MACHINERY COSTS"
        # Add the investment costs of the energy systems
        # Furnace
        if dicoSupply.Furnace_on == 1:
            P_design = dicoSupply.Furnace_Q_max
            
            fNameSlavePP = dicoSupply.configKey + "PPActivationPattern.csv"
            dfFurnace = pd.read_csv(fNameSlavePP, usecols=["Q_Furnace"])
            arrayFurnace = np.array(dfFurnace)
            
            Q_annual =  0
            for i in range(int(np.shape(arrayFurnace)[0])):
                Q_annual += arrayFurnace[i][0]
            
            FurnaceInvCost = furnace.calc_Cinv_furnace(P_design, Q_annual, gv)
            addCosts += FurnaceInvCost
            
            print furnace.calc_Cinv_furnace(P_design, Q_annual, gv), " Furnace"
        
        # CC
        if dicoSupply.CC_on == 1:
            CC_size = dicoSupply.CC_GT_SIZE 
            CCInvCost = chp.calc_Cinv_CCT(CC_size, gv)
            addCosts += CCInvCost
            print chp.calc_Cinv_CCT(CC_size, gv), " CC"
    
        # Boiler Base
        if dicoSupply.Boiler_on == 1:
            Q_design = dicoSupply.Boiler_Q_max
            
            fNameSlavePP = dicoSupply.configKey + "PPActivationPattern.csv"
            dfBoilerBase = pd.read_csv(fNameSlavePP, usecols=["Q_BoilerBase"])
            arrayBoilerBase = np.array(dfBoilerBase)
            
            Q_annual =  0
            for i in range(int(np.shape(arrayBoilerBase)[0])):
                Q_annual += arrayBoilerBase[i][0]
                
            BoilerBInvCost = boiler.calc_Cinv_boiler(Q_design, Q_annual, gv)
            addCosts += BoilerBInvCost
            print boiler.calc_Cinv_boiler(Q_design, Q_annual, gv), " Boiler Base "
        
        # Boiler Peak
        if dicoSupply.BoilerPeak_on == 1:
            Q_design = dicoSupply.BoilerPeak_Q_max
    
            fNameSlavePP = dicoSupply.configKey + "PPActivationPattern.csv"
            dfBoilerPeak = pd.read_csv(fNameSlavePP, usecols=["Q_BoilerPeak"])
            arrayBoilerPeak = np.array(dfBoilerPeak)
            
            Q_annual =  0
            for i in range(int(np.shape(arrayBoilerPeak)[0])):
                Q_annual += arrayBoilerPeak[i][0]
            BoilerPInvCost = boiler.calc_Cinv_boiler(Q_design, Q_annual, gv)
            addCosts += BoilerPInvCost
            print boiler.calc_Cinv_boiler(Q_design, Q_annual, gv), " Boiler Peak"

        
        # HP Lake
        if dicoSupply.HP_Lake_on == 1:
            HP_Size = dicoSupply.HPLake_maxSize
            HPLakeInvC = hp.calc_Cinv_HP(HP_Size, gv)
            addCosts += HPLakeInvC
            print hp.calc_Cinv_HP(HP_Size, gv), " HP Lake"
            
        # HP Sewage
        if dicoSupply.HP_Sew_on == 1:
            HP_Size = dicoSupply.HPSew_maxSize
            HPSewInvC = hp.calc_Cinv_HP(HP_Size, gv)
            addCosts += HPSewInvC
            print hp.calc_Cinv_HP(HP_Size, gv), "HP Sewage"
            
        # GHP
        if dicoSupply.GHP_on == 1:
            fNameSlavePP = dicoSupply.configKey + "PPActivationPattern.csv"
            dfGHP = pd.read_csv(fNameSlavePP, usecols=["E_GHP"])
            arrayGHP = np.array(dfGHP)
            
            GHP_Enom = np.amax(arrayGHP)
            GHPInvC = hp.calc_Cinv_GHP(GHP_Enom, gv) * gv.EURO_TO_CHF
            addCosts += GHPInvC
            print hp.calc_Cinv_GHP(GHP_Enom, gv) * gv.EURO_TO_CHF, " GHP"
            
        # Solar technologies

        PV_peak = dicoSupply.SOLAR_PART_PV * solarFeat.SolarAreaPV * gv.nPV #kW
        PVInvC = pv.calc_Cinv_PV(PV_peak)
        addCosts += PVInvC
        print pv.calc_Cinv_PV(PV_peak), "PV peak"
        
        SC_area = dicoSupply.SOLAR_PART_SC * solarFeat.SolarAreaSC
        SCInvC = stc.calc_Cinv_SC(SC_area)
        addCosts += SCInvC
        print stc.calc_Cinv_SC(SC_area), "SC area"
        

        PVT_peak = dicoSupply.SOLAR_PART_PVT * solarFeat.SolarAreaPVT * gv.nPVT #kW
        PVTInvC = pvt.calc_Cinv_PVT(PVT_peak)
        addCosts += PVTInvC
        print pvt.calc_Cinv_PVT(PVT_peak), "PVT peak"
        
        # Back-up boiler
        BoilerAddInvC = boiler.calc_Cinv_boiler(QUncoveredDesign, QUncoveredAnnual, gv)
        addCosts += BoilerAddInvC
        print boiler.calc_Cinv_boiler(QUncoveredDesign, QUncoveredAnnual, gv), "backup boiler"
        
    
        # Hex and HP for Heat recovery
        print "\n STORAGE PART COSTS"
        if dicoSupply.WasteServersHeatRecovery == 1:
            df = pd.read_csv(locator.pathNtwRes + "/" + dicoSupply.NETWORK_DATA_FILE, usecols = ["Qcdata_netw_total"])
            array = np.array(df)
            QhexMax = np.amax(array)
            StorageHEXCost += hex.calc_Cinv_HEX(QhexMax, gv)
            
            print hex.calc_Cinv_HEX(QhexMax, gv), "Hex for data center"
            
            df = pd.read_csv(locator.pathSlaveRes + "/" + dicoSupply.configKey + "StorageOperationData.csv", usecols = ["HPServerHeatDesignArray"])
            array = np.array(df)
            QhpMax = np.amax(array)
            StorageHEXCost += hp.calc_Cinv_HP(QhpMax, gv)
            print hp.calc_Cinv_HP(QhpMax, gv), "HP for data center"
            
        if dicoSupply.WasteCompressorHeatRecovery == 1:
            df = pd.read_csv(locator.pathNtwRes + "/" + dicoSupply.NETWORK_DATA_FILE, usecols = ["Ecaf_netw_total"])
            array = np.array(df)
            QhexMax = np.amax(array)
        
            StorageHEXCost += hex.calc_Cinv_HEX(QhexMax, gv)
            print hex.calc_Cinv_HEX(QhexMax, gv), "Hex for compressed air"
            
            df = pd.read_csv(locator.pathSlaveRes + "/" + dicoSupply.configKey + "StorageOperationData.csv", usecols = ["HPCompAirDesignArray"])
            array = np.array(df)
            QhpMax = np.amax(array)

            StorageHEXCost += hp.calc_Cinv_HP(QhpMax, gv)
            print hp.calc_Cinv_HP(QhpMax, gv), "HP for compressed air"
        addCosts += StorageHEXCost
        
        # Heat pump solar to storage
        df = pd.read_csv(locator.pathSlaveRes + "/" + dicoSupply.configKey + "StorageOperationData.csv", usecols = ["HPScDesignArray", "HPpvt_designArray"])
        array = np.array(df)
        QhpMax_PVT = np.amax(array[:,1])
        QhpMax_SC = np.amax(array[:,0])
        
        StorageHPCost += hp.calc_Cinv_HP(QhpMax_PVT, gv)
        print hp.calc_Cinv_HP(QhpMax_PVT, gv), "HP for PVT"

        StorageHPCost += hp.calc_Cinv_HP(QhpMax_SC, gv)
        print hp.calc_Cinv_HP(QhpMax_SC, gv), "HP for SC"
        
        # HP for storage operation
        df = pd.read_csv(locator.pathSlaveRes + "/" + dicoSupply.configKey + "StorageOperationData.csv", usecols = ["E_aux_ch", "E_aux_dech", "Q_from_storage_used", "Q_to_storage"])
        array = np.array(df)
        QmaxHPStorage = 0
        for i in range(gv.DAYS_IN_YEAR * gv.HOURS_IN_DAY):
            if array[i][0] > 0:
                QmaxHPStorage = max(QmaxHPStorage, array[i][3] + array[i][0])
            elif array[i][1] > 0:
                QmaxHPStorage = max(QmaxHPStorage, array[i][2] + array[i][1])
        
        StorageHPCost += hp.calc_Cinv_HP(QmaxHPStorage, gv)
        addCosts += StorageHPCost

        print hp.calc_Cinv_HP(QmaxHPStorage, gv), "HP for storage"
        
        
        # Storage
        df = pd.read_csv(locator.pathSlaveRes + "/" + dicoSupply.configKey + "StorageOperationData.csv", usecols = ["Storage_Size"], nrows = 1)
        StorageVol = np.array(df)[0][0]
        StorageInvC += storage.calc_Cinv_storage(StorageVol, gv)
        addCosts += StorageInvC
        print storage.calc_Cinv_storage(StorageVol, gv), "Storage Costs"
        
        
        # Costs from network configuration
        print "\n COSTS FROM NETWORK CONFIGURATION"
        if gv.ZernezFlag == 1:
            NetworkCost += network.calc_Cinv_network_linear(gv.NetworkLengthZernez, gv) * nBuildinNtw / len(buildList)
        else:
            NetworkCost += ntwFeat.pipesCosts_DHN * nBuildinNtw / len(buildList)
        addCosts += NetworkCost
        print ntwFeat.pipesCosts_DHN * nBuildinNtw / len(buildList), "Pipes Costs"
    
        # HEX (1 per building in ntw)
        for (index, buildName) in zip(indCombi, buildList):
            if index == "1":
                
                subsFileName = buildName + "_result.csv"
                df = pd.read_csv(locator.pathSubsRes + "/" + subsFileName, usecols = ["Q_dhw", "Q_heating"])
                subsArray = np.array(df)
                
                Qmax = np.amax( subsArray[:,0] + subsArray[:,1] )
                SubstHEXCost += hex.calc_Cinv_HEX(Qmax, gv)
                print hex.calc_Cinv_HEX(Qmax, gv), "Hex", buildName
        addCosts += SubstHEXCost

        # HEX for solar
        roof_area = np.array(pd.read_csv(locator.get_total_demand(), usecols=["Aroof_m2"]))

        areaAvail = 0
        for i in range( len(indCombi) ):
            index = indCombi[i]
            if index == "1":
                areaAvail += roof_area[i][0]
                
        for i in range( len(indCombi) ):
            index = indCombi[i]
            if index == "1":
                share = roof_area[i][0] / areaAvail
                #print share, "solar area share", buildList[i]
                
                SC_Qmax = solarFeat.SC_Qnom * dicoSupply.SOLAR_PART_SC * share
                SCHEXCost += hex.calc_Cinv_HEX(SC_Qmax, gv)
                print hex.calc_Cinv_HEX(SC_Qmax, gv), "Hex SC", buildList[i]
                
                PVT_Qmax = solarFeat.PVT_Qnom * dicoSupply.SOLAR_PART_PVT * share
                PVTHEXCost += hex.calc_Cinv_HEX(PVT_Qmax, gv)
                print hex.calc_Cinv_HEX(PVT_Qmax, gv), "Hex PVT", buildList[i]
        addCosts += SCHEXCost
        addCosts += PVTHEXCost
        
        print addCosts,"addCosts in extraCostsMain"
        # Pump operation costs
        pumpCosts = pumps.calc_Ctot_pump(dicoSupply, buildList, locator.pathNtwRes, ntwFeat, gv)
        addCosts += pumpCosts
        print pumpCosts, "Pump Operation costs in extraCostsMain\n"
    
    # import gas consumption data from:

    if indCombi.count("1") > 0:
        # import gas consumption data from:
        
        FileName = locator.pathSlaveRes + "/" + dicoSupply.configKey + "PrimaryEnergyBySource.csv"
        colName = "EgasPrimaryPeakPower"
        EgasPrimaryDataframe = pd.read_csv(FileName, usecols=[colName])
        #print EgasPrimaryDataframe
        #print np.array(EgasPrimaryDataframe)
        
        #print float(np.array(EgasPrimaryDataframe))
        
        EgasPrimaryPeakPower = float(np.array(EgasPrimaryDataframe))
        GasConnectionInvCost = ngas.calc_Cinv_gas(EgasPrimaryPeakPower, gv)
    else:
        GasConnectionInvCost = 0.0
        
    addCosts += GasConnectionInvCost
    # Save data
    results = pd.DataFrame({
                            "SCInvC":[SCInvC],
                            "PVTInvC":[PVTInvC],
                            "BoilerAddInvC":[BoilerAddInvC],
                            "StorageHEXCost":[StorageHEXCost],
                            "StorageHPCost":[StorageHPCost],
                            "StorageInvC":[StorageInvC],
                            "StorageCostSum":[StorageInvC+StorageHPCost+StorageHEXCost],
                            "NetworkCost":[NetworkCost],
                            "SubstHEXCost":[SubstHEXCost],
                            "DHNInvestCost":[addCosts - CostDiscBuild],
                            "PVTHEXCost":[PVTHEXCost],
                            "CostDiscBuild":[CostDiscBuild],
                            "CO2DiscBuild":[CO2DiscBuild],
                            "PrimDiscBuild":[PrimDiscBuild],
                            "FurnaceInvCost":[FurnaceInvCost],
                            "BoilerBInvCost":[BoilerBInvCost],
                            "BoilerPInvCost":[BoilerPInvCost],
                            "HPLakeInvC":[HPLakeInvC],
                            "HPSewInvC":[HPSewInvC],
                            "SCHEXCost":[SCHEXCost],
                            "pumpCosts":[pumpCosts],
                            "SumInvestCost":[addCosts],
                            "GasConnectionInvCa":[GasConnectionInvCost]
                            })
    Name = "/" + dicoSupply.configKey + "_InvestmentCostDetailed.csv"
    results.to_csv(locator.pathSlaveRes + Name, sep=',')
     
      
    return (addCosts, addCO2, addPrim)
示例#4
0
def addCosts(indCombi, buildList, locator, dicoSupply, QUncoveredDesign,
             QUncoveredAnnual, solarFeat, ntwFeat, gv):
    """
    Computes additional costs / GHG emisions / primary energy needs
    for the individual
    
    Parameters
    ----------
    indCombi : string
        with 0 if disconnected building, 1 if connected
    buildList : list
        list of buildings in the district
    locator : string
        path to folders
    dicoSupply : class context
        with the features of the specific individual
    QuncoveredDesign : float
        hourly max of the heating uncovered demand
    QuncoveredAnnual : float
        total heating uncovered
    solarFeat / ntwFeat : class solarFeatures / ntwFeatures
    
    Returns
    -------
    (addCosts, addCO2, addPrim) : tuple
    
    """
    addCosts = 0
    addCO2 = 0
    addPrim = 0
    nBuildinNtw = 0

    # Add the features from the disconnected buildings
    print "\n COSTS FROM DISCONNECTED BUILDINGS"
    os.chdir(locator.pathDiscRes)
    CostDiscBuild = 0
    CO2DiscBuild = 0
    PrimDiscBuild = 0
    FurnaceInvCost = 0
    CCInvCost = 0
    BoilerBInvCost = 0
    BoilerPInvCost = 0
    HPLakeInvC = 0
    HPSewInvC = 0
    GHPInvC = 0
    PVInvC = 0
    SCInvC = 0
    PVTInvC = 0
    BoilerAddInvC = 0
    StorageHEXCost = 0
    StorageHPCost = 0
    StorageInvC = 0
    NetworkCost = 0
    SubstHEXCost = 0
    PVTHEXCost = 0
    SCHEXCost = 0
    pumpCosts = 0
    GasConnectionInvCost = 0

    for (index, buildName) in zip(indCombi, buildList):
        if index == "0":
            discFileName = "DiscOp_" + buildName + "_result.csv"
            df = pd.read_csv(discFileName)
            dfBest = df[df["Best configuration"] == 1]
            CostDiscBuild += dfBest["Total Costs [CHF]"].iloc[0]  # [CHF]
            CO2DiscBuild += dfBest["CO2 Emissions [kgCO2-eq]"].iloc[
                0]  # [kg CO2]
            PrimDiscBuild += dfBest["Primary Energy Needs [MJoil-eq]"].iloc[
                0]  # [MJ-oil-eq]

            print dfBest["Total Costs [CHF]"].iloc[
                0], buildName, "disconnected"

        else:
            nBuildinNtw += 1

    addCosts += CostDiscBuild
    addCO2 += CO2DiscBuild
    addPrim += PrimDiscBuild

    # Add the features for the network

    if indCombi.count("1") > 0:
        os.chdir(locator.pathSlaveRes)

        print " \n MACHINERY COSTS"
        # Add the investment costs of the energy systems
        # Furnace
        if dicoSupply.Furnace_on == 1:
            P_design = dicoSupply.Furnace_Q_max

            fNameSlavePP = dicoSupply.configKey + "PPActivationPattern.csv"
            dfFurnace = pd.read_csv(fNameSlavePP, usecols=["Q_Furnace"])
            arrayFurnace = np.array(dfFurnace)

            Q_annual = 0
            for i in range(int(np.shape(arrayFurnace)[0])):
                Q_annual += arrayFurnace[i][0]

            FurnaceInvCost = furnace.calc_Cinv_furnace(P_design, Q_annual, gv)
            addCosts += FurnaceInvCost

            print furnace.calc_Cinv_furnace(P_design, Q_annual, gv), " Furnace"

        # CC
        if dicoSupply.CC_on == 1:
            CC_size = dicoSupply.CC_GT_SIZE
            CCInvCost = chp.calc_Cinv_CCT(CC_size, gv)
            addCosts += CCInvCost
            print chp.calc_Cinv_CCT(CC_size, gv), " CC"

        # Boiler Base
        if dicoSupply.Boiler_on == 1:
            Q_design = dicoSupply.Boiler_Q_max

            fNameSlavePP = dicoSupply.configKey + "PPActivationPattern.csv"
            dfBoilerBase = pd.read_csv(fNameSlavePP, usecols=["Q_BoilerBase"])
            arrayBoilerBase = np.array(dfBoilerBase)

            Q_annual = 0
            for i in range(int(np.shape(arrayBoilerBase)[0])):
                Q_annual += arrayBoilerBase[i][0]

            BoilerBInvCost = boiler.calc_Cinv_boiler(Q_design, Q_annual, gv)
            addCosts += BoilerBInvCost
            print boiler.calc_Cinv_boiler(Q_design, Q_annual,
                                          gv), " Boiler Base "

        # Boiler Peak
        if dicoSupply.BoilerPeak_on == 1:
            Q_design = dicoSupply.BoilerPeak_Q_max

            fNameSlavePP = dicoSupply.configKey + "PPActivationPattern.csv"
            dfBoilerPeak = pd.read_csv(fNameSlavePP, usecols=["Q_BoilerPeak"])
            arrayBoilerPeak = np.array(dfBoilerPeak)

            Q_annual = 0
            for i in range(int(np.shape(arrayBoilerPeak)[0])):
                Q_annual += arrayBoilerPeak[i][0]
            BoilerPInvCost = boiler.calc_Cinv_boiler(Q_design, Q_annual, gv)
            addCosts += BoilerPInvCost
            print boiler.calc_Cinv_boiler(Q_design, Q_annual,
                                          gv), " Boiler Peak"

        # HP Lake
        if dicoSupply.HP_Lake_on == 1:
            HP_Size = dicoSupply.HPLake_maxSize
            HPLakeInvC = hp.calc_Cinv_HP(HP_Size, gv)
            addCosts += HPLakeInvC
            print hp.calc_Cinv_HP(HP_Size, gv), " HP Lake"

        # HP Sewage
        if dicoSupply.HP_Sew_on == 1:
            HP_Size = dicoSupply.HPSew_maxSize
            HPSewInvC = hp.calc_Cinv_HP(HP_Size, gv)
            addCosts += HPSewInvC
            print hp.calc_Cinv_HP(HP_Size, gv), "HP Sewage"

        # GHP
        if dicoSupply.GHP_on == 1:
            fNameSlavePP = dicoSupply.configKey + "PPActivationPattern.csv"
            dfGHP = pd.read_csv(fNameSlavePP, usecols=["E_GHP"])
            arrayGHP = np.array(dfGHP)

            GHP_Enom = np.amax(arrayGHP)
            GHPInvC = hp.calc_Cinv_GHP(GHP_Enom, gv) * gv.EURO_TO_CHF
            addCosts += GHPInvC
            print hp.calc_Cinv_GHP(GHP_Enom, gv) * gv.EURO_TO_CHF, " GHP"

        # Solar technologies

        PV_peak = dicoSupply.SOLAR_PART_PV * solarFeat.SolarAreaPV * gv.nPV  #kW
        PVInvC = pv.calc_Cinv_PV(PV_peak)
        addCosts += PVInvC
        print pv.calc_Cinv_PV(PV_peak), "PV peak"

        SC_area = dicoSupply.SOLAR_PART_SC * solarFeat.SolarAreaSC
        SCInvC = stc.calc_Cinv_SC(SC_area)
        addCosts += SCInvC
        print stc.calc_Cinv_SC(SC_area), "SC area"

        PVT_peak = dicoSupply.SOLAR_PART_PVT * solarFeat.SolarAreaPVT * gv.nPVT  #kW
        PVTInvC = pvt.calc_Cinv_PVT(PVT_peak)
        addCosts += PVTInvC
        print pvt.calc_Cinv_PVT(PVT_peak), "PVT peak"

        # Back-up boiler
        BoilerAddInvC = boiler.calc_Cinv_boiler(QUncoveredDesign,
                                                QUncoveredAnnual, gv)
        addCosts += BoilerAddInvC
        print boiler.calc_Cinv_boiler(QUncoveredDesign, QUncoveredAnnual,
                                      gv), "backup boiler"

        # Hex and HP for Heat recovery
        print "\n STORAGE PART COSTS"
        if dicoSupply.WasteServersHeatRecovery == 1:
            df = pd.read_csv(locator.pathNtwRes + "/" +
                             dicoSupply.NETWORK_DATA_FILE,
                             usecols=["Qcdata_netw_total"])
            array = np.array(df)
            QhexMax = np.amax(array)
            StorageHEXCost += hex.calc_Cinv_HEX(QhexMax, gv)

            print hex.calc_Cinv_HEX(QhexMax, gv), "Hex for data center"

            df = pd.read_csv(locator.pathSlaveRes + "/" +
                             dicoSupply.configKey + "StorageOperationData.csv",
                             usecols=["HPServerHeatDesignArray"])
            array = np.array(df)
            QhpMax = np.amax(array)
            StorageHEXCost += hp.calc_Cinv_HP(QhpMax, gv)
            print hp.calc_Cinv_HP(QhpMax, gv), "HP for data center"

        if dicoSupply.WasteCompressorHeatRecovery == 1:
            df = pd.read_csv(locator.pathNtwRes + "/" +
                             dicoSupply.NETWORK_DATA_FILE,
                             usecols=["Ecaf_netw_total"])
            array = np.array(df)
            QhexMax = np.amax(array)

            StorageHEXCost += hex.calc_Cinv_HEX(QhexMax, gv)
            print hex.calc_Cinv_HEX(QhexMax, gv), "Hex for compressed air"

            df = pd.read_csv(locator.pathSlaveRes + "/" +
                             dicoSupply.configKey + "StorageOperationData.csv",
                             usecols=["HPCompAirDesignArray"])
            array = np.array(df)
            QhpMax = np.amax(array)

            StorageHEXCost += hp.calc_Cinv_HP(QhpMax, gv)
            print hp.calc_Cinv_HP(QhpMax, gv), "HP for compressed air"
        addCosts += StorageHEXCost

        # Heat pump solar to storage
        df = pd.read_csv(locator.pathSlaveRes + "/" + dicoSupply.configKey +
                         "StorageOperationData.csv",
                         usecols=["HPScDesignArray", "HPpvt_designArray"])
        array = np.array(df)
        QhpMax_PVT = np.amax(array[:, 1])
        QhpMax_SC = np.amax(array[:, 0])

        StorageHPCost += hp.calc_Cinv_HP(QhpMax_PVT, gv)
        print hp.calc_Cinv_HP(QhpMax_PVT, gv), "HP for PVT"

        StorageHPCost += hp.calc_Cinv_HP(QhpMax_SC, gv)
        print hp.calc_Cinv_HP(QhpMax_SC, gv), "HP for SC"

        # HP for storage operation
        df = pd.read_csv(locator.pathSlaveRes + "/" + dicoSupply.configKey +
                         "StorageOperationData.csv",
                         usecols=[
                             "E_aux_ch", "E_aux_dech", "Q_from_storage_used",
                             "Q_to_storage"
                         ])
        array = np.array(df)
        QmaxHPStorage = 0
        for i in range(gv.DAYS_IN_YEAR * gv.HOURS_IN_DAY):
            if array[i][0] > 0:
                QmaxHPStorage = max(QmaxHPStorage, array[i][3] + array[i][0])
            elif array[i][1] > 0:
                QmaxHPStorage = max(QmaxHPStorage, array[i][2] + array[i][1])

        StorageHPCost += hp.calc_Cinv_HP(QmaxHPStorage, gv)
        addCosts += StorageHPCost

        print hp.calc_Cinv_HP(QmaxHPStorage, gv), "HP for storage"

        # Storage
        df = pd.read_csv(locator.pathSlaveRes + "/" + dicoSupply.configKey +
                         "StorageOperationData.csv",
                         usecols=["Storage_Size"],
                         nrows=1)
        StorageVol = np.array(df)[0][0]
        StorageInvC += storage.calc_Cinv_storage(StorageVol, gv)
        addCosts += StorageInvC
        print storage.calc_Cinv_storage(StorageVol, gv), "Storage Costs"

        # Costs from network configuration
        print "\n COSTS FROM NETWORK CONFIGURATION"
        if gv.ZernezFlag == 1:
            NetworkCost += network.calc_Cinv_network_linear(
                gv.NetworkLengthZernez, gv) * nBuildinNtw / len(buildList)
        else:
            NetworkCost += ntwFeat.pipesCosts_DHN * nBuildinNtw / len(
                buildList)
        addCosts += NetworkCost
        print ntwFeat.pipesCosts_DHN * nBuildinNtw / len(
            buildList), "Pipes Costs"

        # HEX (1 per building in ntw)
        for (index, buildName) in zip(indCombi, buildList):
            if index == "1":

                subsFileName = buildName + "_result.csv"
                df = pd.read_csv(locator.pathSubsRes + "/" + subsFileName,
                                 usecols=["Q_dhw", "Q_heating"])
                subsArray = np.array(df)

                Qmax = np.amax(subsArray[:, 0] + subsArray[:, 1])
                SubstHEXCost += hex.calc_Cinv_HEX(Qmax, gv)
                print hex.calc_Cinv_HEX(Qmax, gv), "Hex", buildName
        addCosts += SubstHEXCost

        # HEX for solar
        roof_area = np.array(
            pd.read_csv(locator.get_total_demand(), usecols=["Aroof_m2"]))

        areaAvail = 0
        for i in range(len(indCombi)):
            index = indCombi[i]
            if index == "1":
                areaAvail += roof_area[i][0]

        for i in range(len(indCombi)):
            index = indCombi[i]
            if index == "1":
                share = roof_area[i][0] / areaAvail
                #print share, "solar area share", buildList[i]

                SC_Qmax = solarFeat.SC_Qnom * dicoSupply.SOLAR_PART_SC * share
                SCHEXCost += hex.calc_Cinv_HEX(SC_Qmax, gv)
                print hex.calc_Cinv_HEX(SC_Qmax, gv), "Hex SC", buildList[i]

                PVT_Qmax = solarFeat.PVT_Qnom * dicoSupply.SOLAR_PART_PVT * share
                PVTHEXCost += hex.calc_Cinv_HEX(PVT_Qmax, gv)
                print hex.calc_Cinv_HEX(PVT_Qmax, gv), "Hex PVT", buildList[i]
        addCosts += SCHEXCost
        addCosts += PVTHEXCost

        print addCosts, "addCosts in extraCostsMain"
        # Pump operation costs
        pumpCosts = pumps.calc_Ctot_pump(dicoSupply, buildList,
                                         locator.pathNtwRes, ntwFeat, gv)
        addCosts += pumpCosts
        print pumpCosts, "Pump Operation costs in extraCostsMain\n"

    # import gas consumption data from:

    if indCombi.count("1") > 0:
        # import gas consumption data from:

        FileName = locator.pathSlaveRes + "/" + dicoSupply.configKey + "PrimaryEnergyBySource.csv"
        colName = "EgasPrimaryPeakPower"
        EgasPrimaryDataframe = pd.read_csv(FileName, usecols=[colName])
        #print EgasPrimaryDataframe
        #print np.array(EgasPrimaryDataframe)

        #print float(np.array(EgasPrimaryDataframe))

        EgasPrimaryPeakPower = float(np.array(EgasPrimaryDataframe))
        GasConnectionInvCost = ngas.calc_Cinv_gas(EgasPrimaryPeakPower, gv)
    else:
        GasConnectionInvCost = 0.0

    addCosts += GasConnectionInvCost
    # Save data
    results = pd.DataFrame({
        "SCInvC": [SCInvC],
        "PVTInvC": [PVTInvC],
        "BoilerAddInvC": [BoilerAddInvC],
        "StorageHEXCost": [StorageHEXCost],
        "StorageHPCost": [StorageHPCost],
        "StorageInvC": [StorageInvC],
        "StorageCostSum": [StorageInvC + StorageHPCost + StorageHEXCost],
        "NetworkCost": [NetworkCost],
        "SubstHEXCost": [SubstHEXCost],
        "DHNInvestCost": [addCosts - CostDiscBuild],
        "PVTHEXCost": [PVTHEXCost],
        "CostDiscBuild": [CostDiscBuild],
        "CO2DiscBuild": [CO2DiscBuild],
        "PrimDiscBuild": [PrimDiscBuild],
        "FurnaceInvCost": [FurnaceInvCost],
        "BoilerBInvCost": [BoilerBInvCost],
        "BoilerPInvCost": [BoilerPInvCost],
        "HPLakeInvC": [HPLakeInvC],
        "HPSewInvC": [HPSewInvC],
        "SCHEXCost": [SCHEXCost],
        "pumpCosts": [pumpCosts],
        "SumInvestCost": [addCosts],
        "GasConnectionInvCa": [GasConnectionInvCost]
    })
    Name = "/" + dicoSupply.configKey + "_InvestmentCostDetailed.csv"
    results.to_csv(locator.pathSlaveRes + Name, sep=',')

    return (addCosts, addCO2, addPrim)
示例#5
0
def addCosts(buildList, locator, master_to_slave_vars, Q_uncovered_design_W,
             Q_uncovered_annual_W, solar_features, network_features, gv,
             config, prices, lca):
    """
    Computes additional costs / GHG emisions / primary energy needs
    for the individual
    addCosts = additional costs
    addCO2 = GHG emissions
    addPrm = primary energy needs
    :param DHN_barcode: parameter indicating if the building is connected or not
    :param buildList: list of buildings in the district
    :param locator: input locator set to scenario
    :param master_to_slave_vars: class containing the features of a specific individual
    :param Q_uncovered_design_W: hourly max of the heating uncovered demand
    :param Q_uncovered_annual_W: total heating uncovered
    :param solar_features: solar features
    :param network_features: network features
    :param gv: global variables
    :type indCombi: string
    :type buildList: list
    :type locator: string
    :type master_to_slave_vars: class
    :type Q_uncovered_design_W: float
    :type Q_uncovered_annual_W: float
    :type solar_features: class
    :type network_features: class
    :type gv: class

    :return: returns the objectives addCosts, addCO2, addPrim
    :rtype: tuple
    """
    DHN_barcode = master_to_slave_vars.DHN_barcode
    DCN_barcode = master_to_slave_vars.DCN_barcode
    addcosts_Capex_a_USD = 0
    addcosts_Opex_fixed_USD = 0
    addcosts_Capex_USD = 0
    addCO2 = 0
    addPrim = 0
    nBuildinNtw = 0

    # Add the features from the disconnected buildings
    CostDiscBuild = 0
    CO2DiscBuild = 0
    PrimDiscBuild = 0
    Capex_Disconnected = 0
    Opex_Disconnected = 0
    Capex_a_furnace_USD = 0
    Capex_a_CHP_USD = 0
    Capex_a_Boiler_USD = 0
    Capex_a_Boiler_peak_USD = 0
    Capex_a_Lake_USD = 0
    Capex_a_Sewage_USD = 0
    Capex_a_GHP_USD = 0
    Capex_a_PV_USD = 0
    Capex_a_SC_ET_USD = 0
    Capex_a_SC_FP_USD = 0
    Capex_a_PVT_USD = 0
    Capex_a_Boiler_backup_USD = 0
    Capex_a_HEX = 0
    Capex_a_storage_HP = 0
    Capex_a_HP_storage_USD = 0
    Opex_fixed_SC = 0
    Opex_fixed_PVT_USD = 0
    Opex_fixed_HP_PVT_USD = 0
    Opex_fixed_furnace_USD = 0
    Opex_fixed_CHP_USD = 0
    Opex_fixed_Boiler_USD = 0
    Opex_fixed_Boiler_peak_USD = 0
    Opex_fixed_Boiler_backup_USD = 0
    Opex_fixed_Lake_USD = 0
    Opex_fixed_wasteserver_HEX_USD = 0
    Opex_fixed_wasteserver_HP_USD = 0
    Opex_fixed_PV_USD = 0
    Opex_fixed_GHP_USD = 0
    Opex_fixed_storage_USD = 0
    Opex_fixed_Sewage_USD = 0
    Opex_fixed_HP_storage_USD = 0
    StorageInvC = 0
    NetworkCost_a_USD = 0
    SubstHEXCost_capex = 0
    SubstHEXCost_opex = 0
    PVTHEXCost_Capex = 0
    PVTHEXCost_Opex = 0
    SCHEXCost_Capex = 0
    SCHEXCost_Opex = 0
    pumpCosts = 0
    GasConnectionInvCost = 0
    cost_PV_disconnected = 0
    CO2_PV_disconnected = 0
    Eprim_PV_disconnected = 0
    Capex_furnace_USD = 0
    Capex_CHP_USD = 0
    Capex_Boiler_USD = 0
    Capex_Boiler_peak_USD = 0
    Capex_Lake_USD = 0
    Capex_Sewage_USD = 0
    Capex_GHP = 0
    Capex_PV_USD = 0
    Capex_SC = 0
    Capex_PVT_USD = 0
    Capex_Boiler_backup_USD = 0
    Capex_HEX = 0
    Capex_storage_HP = 0
    Capex_HP_storage = 0
    Capex_SC_ET_USD = 0
    Capex_SC_FP_USD = 0
    Capex_PVT_USD = 0
    Capex_Boiler_backup_USD = 0
    Capex_HP_storage_USD = 0
    Capex_storage_HP = 0
    Capex_CHP_USD = 0
    Capex_furnace_USD = 0
    Capex_Boiler_USD = 0
    Capex_Boiler_peak_USD = 0
    Capex_Lake_USD = 0
    Capex_Sewage_USD = 0
    Capex_pump_USD = 0

    if config.district_heating_network:
        for (index, building_name) in zip(DHN_barcode, buildList):
            if index == "0":
                df = pd.read_csv(
                    locator.
                    get_optimization_decentralized_folder_building_result_heating(
                        building_name))
                dfBest = df[df["Best configuration"] == 1]
                CostDiscBuild += dfBest["Total Costs [CHF]"].iloc[0]  # [CHF]
                CO2DiscBuild += dfBest["CO2 Emissions [kgCO2-eq]"].iloc[
                    0]  # [kg CO2]
                PrimDiscBuild += dfBest[
                    "Primary Energy Needs [MJoil-eq]"].iloc[0]  # [MJ-oil-eq]
                Capex_Disconnected += dfBest[
                    "Annualized Investment Costs [CHF]"].iloc[0]
                Opex_Disconnected += dfBest["Operation Costs [CHF]"].iloc[0]
            else:
                nBuildinNtw += 1
    if config.district_cooling_network:
        PV_barcode = ''
        for (index, building_name) in zip(DCN_barcode, buildList):
            if index == "0":  # choose the best decentralized configuration
                df = pd.read_csv(
                    locator.
                    get_optimization_decentralized_folder_building_result_cooling(
                        building_name, configuration='AHU_ARU_SCU'))
                dfBest = df[df["Best configuration"] == 1]
                CostDiscBuild += dfBest["Total Costs [CHF]"].iloc[0]  # [CHF]
                CO2DiscBuild += dfBest["CO2 Emissions [kgCO2-eq]"].iloc[
                    0]  # [kg CO2]
                PrimDiscBuild += dfBest[
                    "Primary Energy Needs [MJoil-eq]"].iloc[0]  # [MJ-oil-eq]
                Capex_Disconnected += dfBest[
                    "Annualized Investment Costs [CHF]"].iloc[0]
                Opex_Disconnected += dfBest["Operation Costs [CHF]"].iloc[0]
                to_PV = 1
                if dfBest["single effect ACH to AHU_ARU_SCU Share (FP)"].iloc[
                        0] == 1:
                    to_PV = 0
                if dfBest["single effect ACH to AHU_ARU_SCU Share (ET)"].iloc[
                        0] == 1:
                    to_PV = 0
                if dfBest["single effect ACH to SCU Share (FP)"].iloc[0] == 1:
                    to_PV = 0

            else:  # adding costs for buildings in which the centralized plant provides a part of the load requirements
                DCN_unit_configuration = master_to_slave_vars.DCN_supplyunits
                if DCN_unit_configuration == 1:  # corresponds to AHU in the central plant, so remaining load need to be provided by decentralized plant
                    decentralized_configuration = 'ARU_SCU'
                    df = pd.read_csv(
                        locator.
                        get_optimization_decentralized_folder_building_result_cooling(
                            building_name, decentralized_configuration))
                    dfBest = df[df["Best configuration"] == 1]
                    CostDiscBuild += dfBest["Total Costs [CHF]"].iloc[
                        0]  # [CHF]
                    CO2DiscBuild += dfBest["CO2 Emissions [kgCO2-eq]"].iloc[
                        0]  # [kg CO2]
                    PrimDiscBuild += dfBest[
                        "Primary Energy Needs [MJoil-eq]"].iloc[
                            0]  # [MJ-oil-eq]
                    Capex_Disconnected += dfBest[
                        "Annualized Investment Costs [CHF]"].iloc[0]
                    Opex_Disconnected += dfBest["Operation Costs [CHF]"].iloc[
                        0]
                    to_PV = 1
                    if dfBest["single effect ACH to ARU_SCU Share (FP)"].iloc[
                            0] == 1:
                        to_PV = 0
                    if dfBest["single effect ACH to ARU_SCU Share (ET)"].iloc[
                            0] == 1:
                        to_PV = 0

                if DCN_unit_configuration == 2:  # corresponds to ARU in the central plant, so remaining load need to be provided by decentralized plant
                    decentralized_configuration = 'AHU_SCU'
                    df = pd.read_csv(
                        locator.
                        get_optimization_decentralized_folder_building_result_cooling(
                            building_name, decentralized_configuration))
                    dfBest = df[df["Best configuration"] == 1]
                    CostDiscBuild += dfBest["Total Costs [CHF]"].iloc[
                        0]  # [CHF]
                    CO2DiscBuild += dfBest["CO2 Emissions [kgCO2-eq]"].iloc[
                        0]  # [kg CO2]
                    PrimDiscBuild += dfBest[
                        "Primary Energy Needs [MJoil-eq]"].iloc[
                            0]  # [MJ-oil-eq]
                    Capex_Disconnected += dfBest[
                        "Annualized Investment Costs [CHF]"].iloc[0]
                    Opex_Disconnected += dfBest["Operation Costs [CHF]"].iloc[
                        0]
                    to_PV = 1
                    if dfBest["single effect ACH to AHU_SCU Share (FP)"].iloc[
                            0] == 1:
                        to_PV = 0
                    if dfBest["single effect ACH to AHU_SCU Share (ET)"].iloc[
                            0] == 1:
                        to_PV = 0

                if DCN_unit_configuration == 3:  # corresponds to SCU in the central plant, so remaining load need to be provided by decentralized plant
                    decentralized_configuration = 'AHU_ARU'
                    df = pd.read_csv(
                        locator.
                        get_optimization_decentralized_folder_building_result_cooling(
                            building_name, decentralized_configuration))
                    dfBest = df[df["Best configuration"] == 1]
                    CostDiscBuild += dfBest["Total Costs [CHF]"].iloc[
                        0]  # [CHF]
                    CO2DiscBuild += dfBest["CO2 Emissions [kgCO2-eq]"].iloc[
                        0]  # [kg CO2]
                    PrimDiscBuild += dfBest[
                        "Primary Energy Needs [MJoil-eq]"].iloc[
                            0]  # [MJ-oil-eq]
                    Capex_Disconnected += dfBest[
                        "Annualized Investment Costs [CHF]"].iloc[0]
                    Opex_Disconnected += dfBest["Operation Costs [CHF]"].iloc[
                        0]
                    to_PV = 1
                    if dfBest["single effect ACH to AHU_ARU Share (FP)"].iloc[
                            0] == 1:
                        to_PV = 0
                    if dfBest["single effect ACH to AHU_ARU Share (ET)"].iloc[
                            0] == 1:
                        to_PV = 0

                if DCN_unit_configuration == 4:  # corresponds to AHU + ARU in the central plant, so remaining load need to be provided by decentralized plant
                    decentralized_configuration = 'SCU'
                    df = pd.read_csv(
                        locator.
                        get_optimization_decentralized_folder_building_result_cooling(
                            building_name, decentralized_configuration))
                    dfBest = df[df["Best configuration"] == 1]
                    CostDiscBuild += dfBest["Total Costs [CHF]"].iloc[
                        0]  # [CHF]
                    CO2DiscBuild += dfBest["CO2 Emissions [kgCO2-eq]"].iloc[
                        0]  # [kg CO2]
                    PrimDiscBuild += dfBest[
                        "Primary Energy Needs [MJoil-eq]"].iloc[
                            0]  # [MJ-oil-eq]
                    Capex_Disconnected += dfBest[
                        "Annualized Investment Costs [CHF]"].iloc[0]
                    Opex_Disconnected += dfBest["Operation Costs [CHF]"].iloc[
                        0]
                    to_PV = 1
                    if dfBest["single effect ACH to SCU Share (FP)"].iloc[
                            0] == 1:
                        to_PV = 0
                    if dfBest["single effect ACH to SCU Share (ET)"].iloc[
                            0] == 1:
                        to_PV = 0

                if DCN_unit_configuration == 5:  # corresponds to AHU + SCU in the central plant, so remaining load need to be provided by decentralized plant
                    decentralized_configuration = 'ARU'
                    df = pd.read_csv(
                        locator.
                        get_optimization_decentralized_folder_building_result_cooling(
                            building_name, decentralized_configuration))
                    dfBest = df[df["Best configuration"] == 1]
                    CostDiscBuild += dfBest["Total Costs [CHF]"].iloc[
                        0]  # [CHF]
                    CO2DiscBuild += dfBest["CO2 Emissions [kgCO2-eq]"].iloc[
                        0]  # [kg CO2]
                    PrimDiscBuild += dfBest[
                        "Primary Energy Needs [MJoil-eq]"].iloc[
                            0]  # [MJ-oil-eq]
                    Capex_Disconnected += dfBest[
                        "Annualized Investment Costs [CHF]"].iloc[0]
                    Opex_Disconnected += dfBest["Operation Costs [CHF]"].iloc[
                        0]
                    to_PV = 1
                    if dfBest["single effect ACH to ARU Share (FP)"].iloc[
                            0] == 1:
                        to_PV = 0
                    if dfBest["single effect ACH to ARU Share (ET)"].iloc[
                            0] == 1:
                        to_PV = 0

                if DCN_unit_configuration == 6:  # corresponds to ARU + SCU in the central plant, so remaining load need to be provided by decentralized plant
                    decentralized_configuration = 'AHU'
                    df = pd.read_csv(
                        locator.
                        get_optimization_decentralized_folder_building_result_cooling(
                            building_name, decentralized_configuration))
                    dfBest = df[df["Best configuration"] == 1]
                    CostDiscBuild += dfBest["Total Costs [CHF]"].iloc[
                        0]  # [CHF]
                    CO2DiscBuild += dfBest["CO2 Emissions [kgCO2-eq]"].iloc[
                        0]  # [kg CO2]
                    PrimDiscBuild += dfBest[
                        "Primary Energy Needs [MJoil-eq]"].iloc[
                            0]  # [MJ-oil-eq]
                    Capex_Disconnected += dfBest[
                        "Annualized Investment Costs [CHF]"].iloc[0]
                    Opex_Disconnected += dfBest["Operation Costs [CHF]"].iloc[
                        0]
                    to_PV = 1
                    if dfBest["single effect ACH to AHU Share (FP)"].iloc[
                            0] == 1:
                        to_PV = 0
                    if dfBest["single effect ACH to AHU Share (ET)"].iloc[
                            0] == 1:
                        to_PV = 0

                if DCN_unit_configuration == 7:  # corresponds to AHU + ARU + SCU from central plant
                    to_PV = 1

                nBuildinNtw += 1
            PV_barcode = PV_barcode + str(to_PV)

    addcosts_Capex_a_USD += CostDiscBuild
    addCO2 += CO2DiscBuild
    addPrim += PrimDiscBuild

    # Solar technologies

    PV_installed_area_m2 = master_to_slave_vars.SOLAR_PART_PV * solar_features.A_PV_m2  # kW
    Capex_a_PV_USD, Opex_fixed_PV_USD, Capex_PV_USD = pv.calc_Cinv_pv(
        PV_installed_area_m2, locator, config)
    addcosts_Capex_a_USD += Capex_a_PV_USD
    addcosts_Opex_fixed_USD += Opex_fixed_PV_USD
    addcosts_Capex_USD += Capex_PV_USD

    SC_ET_area_m2 = master_to_slave_vars.SOLAR_PART_SC_ET * solar_features.A_SC_ET_m2
    Capex_a_SC_ET_USD, Opex_fixed_SC_ET_USD, Capex_SC_ET_USD = stc.calc_Cinv_SC(
        SC_ET_area_m2, locator, config, 'ET')
    addcosts_Capex_a_USD += Capex_a_SC_ET_USD
    addcosts_Opex_fixed_USD += Opex_fixed_SC_ET_USD
    addcosts_Capex_USD += Capex_SC_ET_USD

    SC_FP_area_m2 = master_to_slave_vars.SOLAR_PART_SC_FP * solar_features.A_SC_FP_m2
    Capex_a_SC_FP_USD, Opex_fixed_SC_FP_USD, Capex_SC_FP_USD = stc.calc_Cinv_SC(
        SC_FP_area_m2, locator, config, 'FP')
    addcosts_Capex_a_USD += Capex_a_SC_FP_USD
    addcosts_Opex_fixed_USD += Opex_fixed_SC_FP_USD
    addcosts_Capex_USD += Capex_SC_FP_USD

    PVT_peak_kW = master_to_slave_vars.SOLAR_PART_PVT * solar_features.A_PVT_m2 * N_PVT  # kW
    Capex_a_PVT_USD, Opex_fixed_PVT_USD, Capex_PVT_USD = pvt.calc_Cinv_PVT(
        PVT_peak_kW, locator, config)
    addcosts_Capex_a_USD += Capex_a_PVT_USD
    addcosts_Opex_fixed_USD += Opex_fixed_PVT_USD
    addcosts_Capex_USD += Capex_PVT_USD

    # Add the features for the distribution

    if DHN_barcode.count("1") > 0 and config.district_heating_network:
        os.chdir(
            locator.get_optimization_slave_results_folder(
                master_to_slave_vars.generation_number))
        # Add the investment costs of the energy systems
        # Furnace
        if master_to_slave_vars.Furnace_on == 1:
            P_design_W = master_to_slave_vars.Furnace_Q_max_W

            fNameSlavePP = locator.get_optimization_slave_heating_activation_pattern_heating(
                master_to_slave_vars.configKey,
                master_to_slave_vars.individual_number,
                master_to_slave_vars.generation_number)
            dfFurnace = pd.read_csv(fNameSlavePP, usecols=["Q_Furnace_W"])
            arrayFurnace_W = np.array(dfFurnace)

            Q_annual_W = 0
            for i in range(int(np.shape(arrayFurnace_W)[0])):
                Q_annual_W += arrayFurnace_W[i][0]

            Capex_a_furnace_USD, Opex_fixed_furnace_USD, Capex_furnace_USD = furnace.calc_Cinv_furnace(
                P_design_W, Q_annual_W, config, locator, 'FU1')
            addcosts_Capex_a_USD += Capex_a_furnace_USD
            addcosts_Opex_fixed_USD += Opex_fixed_furnace_USD
            addcosts_Capex_USD += Capex_furnace_USD

        # CC
        if master_to_slave_vars.CC_on == 1:
            CC_size_W = master_to_slave_vars.CC_GT_SIZE_W
            Capex_a_CHP_USD, Opex_fixed_CHP_USD, Capex_CHP_USD = chp.calc_Cinv_CCGT(
                CC_size_W, locator, config)
            addcosts_Capex_a_USD += Capex_a_CHP_USD
            addcosts_Opex_fixed_USD += Opex_fixed_CHP_USD
            addcosts_Capex_USD += Capex_CHP_USD

        # Boiler Base
        if master_to_slave_vars.Boiler_on == 1:
            Q_design_W = master_to_slave_vars.Boiler_Q_max_W

            fNameSlavePP = locator.get_optimization_slave_heating_activation_pattern(
                master_to_slave_vars.individual_number,
                master_to_slave_vars.generation_number)
            dfBoilerBase = pd.read_csv(fNameSlavePP,
                                       usecols=["Q_BaseBoiler_W"])
            arrayBoilerBase_W = np.array(dfBoilerBase)

            Q_annual_W = 0
            for i in range(int(np.shape(arrayBoilerBase_W)[0])):
                Q_annual_W += arrayBoilerBase_W[i][0]

            Capex_a_Boiler_USD, Opex_fixed_Boiler_USD, Capex_Boiler_USD = boiler.calc_Cinv_boiler(
                Q_design_W, locator, config, 'BO1')
            addcosts_Capex_a_USD += Capex_a_Boiler_USD
            addcosts_Opex_fixed_USD += Opex_fixed_Boiler_USD
            addcosts_Capex_USD += Capex_Boiler_USD

        # Boiler Peak
        if master_to_slave_vars.BoilerPeak_on == 1:
            Q_design_W = master_to_slave_vars.BoilerPeak_Q_max_W

            fNameSlavePP = locator.get_optimization_slave_heating_activation_pattern(
                master_to_slave_vars.individual_number,
                master_to_slave_vars.generation_number)
            dfBoilerPeak = pd.read_csv(fNameSlavePP,
                                       usecols=["Q_PeakBoiler_W"])
            arrayBoilerPeak_W = np.array(dfBoilerPeak)

            Q_annual_W = 0
            for i in range(int(np.shape(arrayBoilerPeak_W)[0])):
                Q_annual_W += arrayBoilerPeak_W[i][0]
            Capex_a_Boiler_peak_USD, Opex_fixed_Boiler_peak_USD, Capex_Boiler_peak_USD = boiler.calc_Cinv_boiler(
                Q_design_W, locator, config, 'BO1')
            addcosts_Capex_a_USD += Capex_a_Boiler_peak_USD
            addcosts_Opex_fixed_USD += Opex_fixed_Boiler_peak_USD
            addcosts_Capex_USD += Capex_Boiler_peak_USD

        # HP Lake
        if master_to_slave_vars.HP_Lake_on == 1:
            HP_Size_W = master_to_slave_vars.HPLake_maxSize_W
            Capex_a_Lake_USD, Opex_fixed_Lake_USD, Capex_Lake_USD = hp.calc_Cinv_HP(
                HP_Size_W, locator, config, 'HP2')
            addcosts_Capex_a_USD += Capex_a_Lake_USD
            addcosts_Opex_fixed_USD += Opex_fixed_Lake_USD
            addcosts_Capex_USD += Capex_Lake_USD

        # HP Sewage
        if master_to_slave_vars.HP_Sew_on == 1:
            HP_Size_W = master_to_slave_vars.HPSew_maxSize_W
            Capex_a_Sewage_USD, Opex_fixed_Sewage_USD, Capex_Sewage_USD = hp.calc_Cinv_HP(
                HP_Size_W, locator, config, 'HP2')
            addcosts_Capex_a_USD += Capex_a_Sewage_USD
            addcosts_Opex_fixed_USD += Opex_fixed_Sewage_USD
            addcosts_Capex_USD += Capex_Sewage_USD

        # GHP
        if master_to_slave_vars.GHP_on == 1:
            fNameSlavePP = locator.get_optimization_slave_electricity_activation_pattern_heating(
                master_to_slave_vars.individual_number,
                master_to_slave_vars.generation_number)
            dfGHP = pd.read_csv(fNameSlavePP, usecols=["E_used_GHP_W"])
            arrayGHP_W = np.array(dfGHP)

            GHP_Enom_W = np.amax(arrayGHP_W)
            Capex_a_GHP_USD, Opex_fixed_GHP_USD, Capex_GHP_USD = hp.calc_Cinv_GHP(
                GHP_Enom_W, locator, config)
            addcosts_Capex_a_USD += Capex_a_GHP_USD * prices.EURO_TO_CHF
            addcosts_Opex_fixed_USD += Opex_fixed_GHP_USD * prices.EURO_TO_CHF
            addcosts_Capex_USD += Capex_GHP_USD

        # Back-up boiler
        Capex_a_Boiler_backup_USD, Opex_fixed_Boiler_backup_USD, Capex_Boiler_backup_USD = boiler.calc_Cinv_boiler(
            Q_uncovered_design_W, locator, config, 'BO1')
        addcosts_Capex_a_USD += Capex_a_Boiler_backup_USD
        addcosts_Opex_fixed_USD += Opex_fixed_Boiler_backup_USD
        addcosts_Capex_USD += Capex_Boiler_backup_USD
        master_to_slave_vars.BoilerBackup_Q_max_W = Q_uncovered_design_W

        # Hex and HP for Heat recovery
        if master_to_slave_vars.WasteServersHeatRecovery == 1:
            df = pd.read_csv(os.path.join(
                locator.get_optimization_network_results_folder(),
                master_to_slave_vars.network_data_file_heating),
                             usecols=["Qcdata_netw_total_kWh"])
            array = np.array(df)
            Q_HEX_max_kWh = np.amax(array)
            Capex_a_wasteserver_HEX_USD, Opex_fixed_wasteserver_HEX_USD, Capex_wasteserver_HEX_USD = hex.calc_Cinv_HEX(
                Q_HEX_max_kWh, locator, config, 'HEX1')
            addcosts_Capex_a_USD += (Capex_a_wasteserver_HEX_USD)
            addcosts_Opex_fixed_USD += Opex_fixed_wasteserver_HEX_USD
            addcosts_Capex_USD += Capex_wasteserver_HEX_USD

            df = pd.read_csv(
                locator.get_optimization_slave_storage_operation_data(
                    master_to_slave_vars.individual_number,
                    master_to_slave_vars.generation_number),
                usecols=["HPServerHeatDesignArray_kWh"])
            array = np.array(df)
            Q_HP_max_kWh = np.amax(array)
            Capex_a_wasteserver_HP_USD, Opex_fixed_wasteserver_HP_USD, Capex_wasteserver_HP_USD = hp.calc_Cinv_HP(
                Q_HP_max_kWh, locator, config, 'HP2')
            addcosts_Capex_a_USD += (Capex_a_wasteserver_HP_USD)
            addcosts_Opex_fixed_USD += Opex_fixed_wasteserver_HP_USD
            addcosts_Capex_USD += Capex_wasteserver_HP_USD

        # Heat pump from solar to DH
        df = pd.read_csv(
            locator.get_optimization_slave_storage_operation_data(
                master_to_slave_vars.individual_number,
                master_to_slave_vars.generation_number),
            usecols=["HPScDesignArray_Wh", "HPpvt_designArray_Wh"])
        array = np.array(df)
        Q_HP_max_PVT_wh = np.amax(array[:, 1])
        Q_HP_max_SC_Wh = np.amax(array[:, 0])
        Capex_a_HP_PVT_USD, Opex_fixed_HP_PVT_USD, Capex_HP_PVT_USD = hp.calc_Cinv_HP(
            Q_HP_max_PVT_wh, locator, config, 'HP2')
        Capex_a_storage_HP += (Capex_a_HP_PVT_USD)
        addcosts_Opex_fixed_USD += Opex_fixed_HP_PVT_USD
        addcosts_Capex_USD += Capex_HP_PVT_USD

        Capex_a_HP_SC_USD, Opex_fixed_HP_SC_USD, Capex_HP_SC_USD = hp.calc_Cinv_HP(
            Q_HP_max_SC_Wh, locator, config, 'HP2')
        Capex_a_storage_HP += (Capex_a_HP_SC_USD)
        addcosts_Opex_fixed_USD += Opex_fixed_HP_SC_USD
        addcosts_Capex_USD += Capex_HP_SC_USD

        # HP for storage operation for charging from solar and discharging to DH
        df = pd.read_csv(locator.get_optimization_slave_storage_operation_data(
            master_to_slave_vars.individual_number,
            master_to_slave_vars.generation_number),
                         usecols=[
                             "E_aux_ch_W", "E_aux_dech_W",
                             "Q_from_storage_used_W", "Q_to_storage_W"
                         ])
        array = np.array(df)
        Q_HP_max_storage_W = 0
        for i in range(DAYS_IN_YEAR * HOURS_IN_DAY):
            if array[i][0] > 0:
                Q_HP_max_storage_W = max(Q_HP_max_storage_W,
                                         array[i][3] + array[i][0])
            elif array[i][1] > 0:
                Q_HP_max_storage_W = max(Q_HP_max_storage_W,
                                         array[i][2] + array[i][1])

        Capex_a_HP_storage_USD, Opex_fixed_HP_storage_USD, Capex_HP_storage_USD = hp.calc_Cinv_HP(
            Q_HP_max_storage_W, locator, config, 'HP2')
        addcosts_Capex_a_USD += (Capex_a_HP_storage_USD)
        addcosts_Opex_fixed_USD += Opex_fixed_HP_storage_USD
        addcosts_Capex_USD += Capex_HP_storage_USD

        # Storage
        df = pd.read_csv(locator.get_optimization_slave_storage_operation_data(
            master_to_slave_vars.individual_number,
            master_to_slave_vars.generation_number),
                         usecols=["Storage_Size_m3"],
                         nrows=1)
        StorageVol_m3 = np.array(df)[0][0]
        Capex_a_storage_USD, Opex_fixed_storage_USD, Capex_storage_USD = storage.calc_Cinv_storage(
            StorageVol_m3, locator, config, 'TES2')
        addcosts_Capex_a_USD += Capex_a_storage_USD
        addcosts_Opex_fixed_USD += Opex_fixed_storage_USD
        addcosts_Capex_USD += Capex_storage_USD

        # Costs from distribution configuration
        if gv.ZernezFlag == 1:
            NetworkCost_a_USD, NetworkCost_USD = network.calc_Cinv_network_linear(
                gv.NetworkLengthZernez, gv)
            NetworkCost_a_USD = NetworkCost_a_USD * nBuildinNtw / len(
                buildList)
            NetworkCost_USD = NetworkCost_USD * nBuildinNtw / len(buildList)
        else:
            NetworkCost_USD = network_features.pipesCosts_DHN_USD
            NetworkCost_USD = NetworkCost_USD * nBuildinNtw / len(buildList)
            NetworkCost_a_USD = NetworkCost_USD * gv.PipeInterestRate * (
                1 + gv.PipeInterestRate)**gv.PipeLifeTime / (
                    (1 + gv.PipeInterestRate)**gv.PipeLifeTime - 1)
        addcosts_Capex_a_USD += NetworkCost_a_USD
        addcosts_Capex_USD += NetworkCost_USD

        # HEX (1 per building in ntw)
        for (index, building_name) in zip(DHN_barcode, buildList):
            if index == "1":
                df = pd.read_csv(
                    locator.get_optimization_substations_results_file(
                        building_name),
                    usecols=["Q_dhw_W", "Q_heating_W"])
                subsArray = np.array(df)

                Q_max_W = np.amax(subsArray[:, 0] + subsArray[:, 1])
                Capex_a_HEX_building_USD, Opex_fixed_HEX_building_USD, Capex_HEX_building_USD = hex.calc_Cinv_HEX(
                    Q_max_W, locator, config, 'HEX1')
                addcosts_Capex_a_USD += Capex_a_HEX_building_USD
                addcosts_Opex_fixed_USD += Opex_fixed_HEX_building_USD
                addcosts_Capex_USD += Capex_HEX_building_USD

        # HEX for solar
        roof_area_m2 = np.array(
            pd.read_csv(locator.get_total_demand(), usecols=["Aroof_m2"]))

        areaAvail = 0
        for i in range(len(DHN_barcode)):
            index = DHN_barcode[i]
            if index == "1":
                areaAvail += roof_area_m2[i][0]

        for i in range(len(DHN_barcode)):
            index = DHN_barcode[i]
            if index == "1":
                share = roof_area_m2[i][0] / areaAvail
                #print share, "solar area share", buildList[i]

                Q_max_SC_ET_Wh = solar_features.Q_nom_SC_ET_Wh * master_to_slave_vars.SOLAR_PART_SC_ET * share
                Capex_a_HEX_SC_ET_USD, Opex_fixed_HEX_SC_ET_USD, Capex_HEX_SC_ET_USD = hex.calc_Cinv_HEX(
                    Q_max_SC_ET_Wh, locator, config, 'HEX1')
                addcosts_Capex_a_USD += Capex_a_HEX_SC_ET_USD
                addcosts_Opex_fixed_USD += Opex_fixed_HEX_SC_ET_USD
                addcosts_Capex_USD += Capex_HEX_SC_ET_USD

                Q_max_SC_FP_Wh = solar_features.Q_nom_SC_FP_Wh * master_to_slave_vars.SOLAR_PART_SC_FP * share
                Capex_a_HEX_SC_FP_USD, Opex_fixed_HEX_SC_FP_USD, Capex_HEX_SC_FP_USD = hex.calc_Cinv_HEX(
                    Q_max_SC_FP_Wh, locator, config, 'HEX1')
                addcosts_Capex_a_USD += Capex_a_HEX_SC_FP_USD
                addcosts_Opex_fixed_USD += Opex_fixed_HEX_SC_FP_USD
                addcosts_Capex_USD += Capex_HEX_SC_FP_USD

                Q_max_PVT_Wh = solar_features.Q_nom_PVT_Wh * master_to_slave_vars.SOLAR_PART_PVT * share
                Capex_a_HEX_PVT_USD, Opex_fixed_HEX_PVT_USD, Capex_HEX_PVT_USD = hex.calc_Cinv_HEX(
                    Q_max_PVT_Wh, locator, config, 'HEX1')
                addcosts_Capex_a_USD += Capex_a_HEX_PVT_USD
                addcosts_Opex_fixed_USD += Opex_fixed_HEX_PVT_USD
                addcosts_Capex_USD += Capex_HEX_PVT_USD

    # Pump operation costs
    Capex_a_pump_USD, Opex_fixed_pump_USD, Opex_var_pump_USD, Capex_pump_USD = pumps.calc_Ctot_pump(
        master_to_slave_vars, network_features, gv, locator, lca, config)
    addcosts_Capex_a_USD += Capex_a_pump_USD
    addcosts_Opex_fixed_USD += Opex_fixed_pump_USD
    addcosts_Capex_USD += Capex_pump_USD

    # import gas consumption data from:
    if DHN_barcode.count("1") > 0 and config.district_heating_network:
        # import gas consumption data from:
        EgasPrimaryDataframe_W = pd.read_csv(
            locator.get_optimization_slave_natural_gas_imports(
                master_to_slave_vars.individual_number,
                master_to_slave_vars.generation_number))
        E_gas_primary_peak_power_W = np.amax(
            EgasPrimaryDataframe_W['NG_total_W'])
        GasConnectionInvCost = ngas.calc_Cinv_gas(E_gas_primary_peak_power_W,
                                                  gv)
    elif DCN_barcode.count("1") > 0 and config.district_cooling_network:
        EgasPrimaryDataframe_W = pd.read_csv(
            locator.get_optimization_slave_natural_gas_imports(
                master_to_slave_vars.individual_number,
                master_to_slave_vars.generation_number))
        E_gas_primary_peak_power_W = np.amax(
            EgasPrimaryDataframe_W['NG_total_W'])
        GasConnectionInvCost = ngas.calc_Cinv_gas(E_gas_primary_peak_power_W,
                                                  gv)
    else:
        GasConnectionInvCost = 0.0

    addcosts_Capex_a_USD += GasConnectionInvCost
    # Save data
    results = pd.DataFrame({
        "Capex_a_SC_ET_USD": [Capex_a_SC_ET_USD],
        "Capex_a_SC_FP_USD": [Capex_a_SC_FP_USD],
        "Opex_fixed_SC": [Opex_fixed_SC],
        "Capex_a_PVT": [Capex_a_PVT_USD],
        "Opex_fixed_PVT": [Opex_fixed_PVT_USD],
        "Capex_a_Boiler_backup": [Capex_a_Boiler_backup_USD],
        "Opex_fixed_Boiler_backup": [Opex_fixed_Boiler_backup_USD],
        "Capex_a_storage_HEX": [Capex_a_HP_storage_USD],
        "Opex_fixed_storage_HEX": [Opex_fixed_HP_storage_USD],
        "Capex_a_storage_HP": [Capex_a_storage_HP],
        "Capex_a_CHP": [Capex_a_CHP_USD],
        "Opex_fixed_CHP": [Opex_fixed_CHP_USD],
        "StorageInvC": [StorageInvC],
        "StorageCostSum": [StorageInvC + Capex_a_storage_HP + Capex_a_HEX],
        "NetworkCost": [NetworkCost_a_USD],
        "SubstHEXCost": [SubstHEXCost_capex],
        "DHNInvestCost": [addcosts_Capex_a_USD - CostDiscBuild],
        "PVTHEXCost_Capex": [PVTHEXCost_Capex],
        "CostDiscBuild": [CostDiscBuild],
        "CO2DiscBuild": [CO2DiscBuild],
        "PrimDiscBuild": [PrimDiscBuild],
        "Capex_a_furnace": [Capex_a_furnace_USD],
        "Opex_fixed_furnace": [Opex_fixed_furnace_USD],
        "Capex_a_Boiler": [Capex_a_Boiler_USD],
        "Opex_fixed_Boiler": [Opex_fixed_Boiler_USD],
        "Capex_a_Boiler_peak": [Capex_a_Boiler_peak_USD],
        "Opex_fixed_Boiler_peak": [Opex_fixed_Boiler_peak_USD],
        "Capex_Disconnected": [Capex_Disconnected],
        "Opex_Disconnected": [Opex_Disconnected],
        "Capex_a_Lake": [Capex_a_Lake_USD],
        "Opex_fixed_Lake": [Opex_fixed_Lake_USD],
        "Capex_a_Sewage": [Capex_a_Sewage_USD],
        "Opex_fixed_Sewage": [Opex_fixed_Sewage_USD],
        "SCHEXCost_Capex": [SCHEXCost_Capex],
        "Capex_a_pump": [Capex_a_pump_USD],
        "Opex_fixed_pump": [Opex_fixed_pump_USD],
        "Opex_var_pump": [Opex_var_pump_USD],
        "Sum_CAPEX": [addcosts_Capex_a_USD],
        "Sum_OPEX_fixed": [addcosts_Opex_fixed_USD],
        "GasConnectionInvCa": [GasConnectionInvCost],
        "CO2_PV_disconnected": [CO2_PV_disconnected],
        "cost_PV_disconnected": [cost_PV_disconnected],
        "Eprim_PV_disconnected": [Eprim_PV_disconnected],
        "Capex_SC_ET_USD": [Capex_SC_ET_USD],
        "Capex_SC_FP_USD": [Capex_SC_FP_USD],
        "Capex_PVT": [Capex_PVT_USD],
        "Capex_Boiler_backup": [Capex_Boiler_backup_USD],
        "Capex_storage_HEX": [Capex_HP_storage_USD],
        "Capex_storage_HP": [Capex_storage_HP],
        "Capex_CHP": [Capex_CHP_USD],
        "Capex_furnace": [Capex_furnace_USD],
        "Capex_Boiler_base": [Capex_Boiler_USD],
        "Capex_Boiler_peak": [Capex_Boiler_peak_USD],
        "Capex_Lake": [Capex_Lake_USD],
        "Capex_Sewage": [Capex_Sewage_USD],
        "Capex_pump": [Capex_pump_USD],
    })
    results.to_csv(locator.get_optimization_slave_investment_cost_detailed(
        master_to_slave_vars.individual_number,
        master_to_slave_vars.generation_number),
                   sep=',')
    return (addcosts_Capex_a_USD + addcosts_Opex_fixed_USD, addCO2, addPrim)
示例#6
0
def calc_network_costs_cooling(locator, master_to_slave_vars, network_features,
                               lca, network_type):
    # Intitialize class
    pipesCosts_USD = network_features.pipesCosts_DCN_USD
    num_buildings_connected = master_to_slave_vars.number_of_buildings_connected_cooling

    num_all_buildings = master_to_slave_vars.num_total_buildings
    ratio_connected = num_buildings_connected / num_all_buildings

    # Capital costs
    Inv_IR = 0.05
    Inv_LT = 20
    Inv_OM = 0.10
    Capex_Network_USD = pipesCosts_USD * ratio_connected
    Capex_a_Network_USD = Capex_Network_USD * (Inv_IR) * (
        1 + Inv_IR)**Inv_LT / ((1 + Inv_IR)**Inv_LT - 1)
    Opex_fixed_Network_USD = Capex_Network_USD * Inv_OM

    # costs of pumps
    Capex_a_pump_USD, Opex_fixed_pump_USD, Opex_var_pump_USD, Capex_pump_USD, P_motor_tot_W = PumpModel.calc_Ctot_pump(
        master_to_slave_vars, network_features, locator, lca, network_type)

    # COOLING SUBSTATIONS
    DCN_barcode = master_to_slave_vars.DCN_barcode
    building_names = master_to_slave_vars.building_names_cooling
    Capex_Substations_USD, \
    Capex_a_Substations_USD, \
    Opex_fixed_Substations_USD, \
    Opex_var_Substations_USD = calc_substations_costs_cooling(building_names, master_to_slave_vars, DCN_barcode,
                                                              locator)

    # summarize
    Capex_Network_USD += Capex_pump_USD
    Capex_a_Network_USD += Capex_a_pump_USD
    Opex_fixed_Network_USD += Opex_fixed_pump_USD
    Opex_var_Network_USD = Opex_var_pump_USD

    performance = {
        'Capex_a_DCN_connected_USD': Capex_a_Network_USD,
        "Capex_a_SubstationsCooling_connected_USD": Capex_a_Substations_USD,
        "Capex_total_DCN_connected_USD": Capex_Network_USD,
        "Capex_total_SubstationsCooling_connected_USD": Capex_Substations_USD,
        "Opex_fixed_DCN_connected_USD": Opex_fixed_Network_USD,
        "Opex_fixed_SubstationsCooling_connected_USD":
        Opex_fixed_Substations_USD,
    }
    return performance, P_motor_tot_W
示例#7
0
def addCosts(DHN_barcode, DCN_barcode, buildList, locator,
             master_to_slave_vars, Q_uncovered_design_W, Q_uncovered_annual_W,
             solarFeat, ntwFeat, gv, config, prices, lca):
    """
    Computes additional costs / GHG emisions / primary energy needs
    for the individual
    addCosts = additional costs
    addCO2 = GHG emissions
    addPrm = primary energy needs
    :param DHN_barcode: parameter indicating if the building is connected or not
    :param buildList: list of buildings in the district
    :param locator: input locator set to scenario
    :param master_to_slave_vars: class containing the features of a specific individual
    :param Q_uncovered_design_W: hourly max of the heating uncovered demand
    :param Q_uncovered_annual_W: total heating uncovered
    :param solarFeat: solar features
    :param ntwFeat: network features
    :param gv: global variables
    :type indCombi: string
    :type buildList: list
    :type locator: string
    :type master_to_slave_vars: class
    :type Q_uncovered_design_W: float
    :type Q_uncovered_annual_W: float
    :type solarFeat: class
    :type ntwFeat: class
    :type gv: class

    :return: returns the objectives addCosts, addCO2, addPrim
    :rtype: tuple
    """
    addcosts_Capex_a = 0
    addcosts_Opex_fixed = 0
    addCO2 = 0
    addPrim = 0
    nBuildinNtw = 0

    # Add the features from the disconnected buildings
    CostDiscBuild = 0
    CO2DiscBuild = 0
    PrimDiscBuild = 0
    Capex_Disconnected = 0
    Opex_Disconnected = 0
    Capex_a_furnace = 0
    Capex_a_CHP = 0
    Capex_a_Boiler = 0
    Capex_a_Boiler_peak = 0
    Capex_a_Lake = 0
    Capex_a_Sewage = 0
    Capex_a_GHP = 0
    Capex_a_PV = 0
    Capex_a_SC = 0
    Capex_a_PVT = 0
    Capex_a_Boiler_backup = 0
    Capex_a_HEX = 0
    Capex_a_storage_HP = 0
    Capex_a_HP_storage = 0
    Opex_fixed_SC = 0
    Opex_fixed_PVT = 0
    Opex_fixed_HP_PVT = 0
    Opex_fixed_furnace = 0
    Opex_fixed_CHP = 0
    Opex_fixed_Boiler = 0
    Opex_fixed_Boiler_peak = 0
    Opex_fixed_Boiler_backup = 0
    Opex_fixed_Lake = 0
    Opex_fixed_wasteserver_HEX = 0
    Opex_fixed_wasteserver_HP = 0
    Opex_fixed_PV = 0
    Opex_fixed_GHP = 0
    Opex_fixed_storage = 0
    Opex_fixed_Sewage = 0
    Opex_fixed_HP_storage = 0
    StorageInvC = 0
    NetworkCost = 0
    SubstHEXCost_capex = 0
    SubstHEXCost_opex = 0
    PVTHEXCost_Capex = 0
    PVTHEXCost_Opex = 0
    SCHEXCost_Capex = 0
    SCHEXCost_Opex = 0
    pumpCosts = 0
    GasConnectionInvCost = 0
    cost_PV_disconnected = 0
    CO2_PV_disconnected = 0
    Eprim_PV_disconnected = 0

    if config.optimization.isheating:
        for (index, building_name) in zip(DHN_barcode, buildList):
            if index == "0":
                df = pd.read_csv(
                    locator.
                    get_optimization_disconnected_folder_building_result_heating(
                        building_name))
                dfBest = df[df["Best configuration"] == 1]
                CostDiscBuild += dfBest["Total Costs [CHF]"].iloc[0]  # [CHF]
                CO2DiscBuild += dfBest["CO2 Emissions [kgCO2-eq]"].iloc[
                    0]  # [kg CO2]
                PrimDiscBuild += dfBest[
                    "Primary Energy Needs [MJoil-eq]"].iloc[0]  # [MJ-oil-eq]
                Capex_Disconnected += dfBest[
                    "Annualized Investment Costs [CHF]"].iloc[0]
                Opex_Disconnected += dfBest["Operation Costs [CHF]"].iloc[0]
            else:
                nBuildinNtw += 1
    if config.optimization.iscooling:
        PV_barcode = ''
        for (index, building_name) in zip(DCN_barcode, buildList):
            if index == "0":  # choose the best decentralized configuration
                df = pd.read_csv(
                    locator.
                    get_optimization_disconnected_folder_building_result_cooling(
                        building_name, configuration='AHU_ARU_SCU'))
                dfBest = df[df["Best configuration"] == 1]
                CostDiscBuild += dfBest["Total Costs [CHF]"].iloc[0]  # [CHF]
                CO2DiscBuild += dfBest["CO2 Emissions [kgCO2-eq]"].iloc[
                    0]  # [kg CO2]
                PrimDiscBuild += dfBest[
                    "Primary Energy Needs [MJoil-eq]"].iloc[0]  # [MJ-oil-eq]
                Capex_Disconnected += dfBest[
                    "Annualized Investment Costs [CHF]"].iloc[0]
                Opex_Disconnected += dfBest["Operation Costs [CHF]"].iloc[0]
                to_PV = 1
                if dfBest["single effect ACH to AHU_ARU_SCU Share (FP)"].iloc[
                        0] == 1:
                    to_PV = 0
                if dfBest["single effect ACH to AHU_ARU_SCU Share (ET)"].iloc[
                        0] == 1:
                    to_PV = 0
                if dfBest["single effect ACH to SCU Share (FP)"].iloc[0] == 1:
                    to_PV = 0

            else:  # adding costs for buildings in which the centralized plant provides a part of the load requirements
                DCN_unit_configuration = master_to_slave_vars.DCN_supplyunits
                if DCN_unit_configuration == 1:  # corresponds to AHU in the central plant, so remaining load need to be provided by decentralized plant
                    decentralized_configuration = 'ARU_SCU'
                    df = pd.read_csv(
                        locator.
                        get_optimization_disconnected_folder_building_result_cooling(
                            building_name, decentralized_configuration))
                    dfBest = df[df["Best configuration"] == 1]
                    CostDiscBuild += dfBest["Total Costs [CHF]"].iloc[
                        0]  # [CHF]
                    CO2DiscBuild += dfBest["CO2 Emissions [kgCO2-eq]"].iloc[
                        0]  # [kg CO2]
                    PrimDiscBuild += dfBest[
                        "Primary Energy Needs [MJoil-eq]"].iloc[
                            0]  # [MJ-oil-eq]
                    Capex_Disconnected += dfBest[
                        "Annualized Investment Costs [CHF]"].iloc[0]
                    Opex_Disconnected += dfBest["Operation Costs [CHF]"].iloc[
                        0]
                    to_PV = 1
                    if dfBest["single effect ACH to ARU_SCU Share (FP)"].iloc[
                            0] == 1:
                        to_PV = 0
                    if dfBest["single effect ACH to ARU_SCU Share (ET)"].iloc[
                            0] == 1:
                        to_PV = 0

                if DCN_unit_configuration == 2:  # corresponds to ARU in the central plant, so remaining load need to be provided by decentralized plant
                    decentralized_configuration = 'AHU_SCU'
                    df = pd.read_csv(
                        locator.
                        get_optimization_disconnected_folder_building_result_cooling(
                            building_name, decentralized_configuration))
                    dfBest = df[df["Best configuration"] == 1]
                    CostDiscBuild += dfBest["Total Costs [CHF]"].iloc[
                        0]  # [CHF]
                    CO2DiscBuild += dfBest["CO2 Emissions [kgCO2-eq]"].iloc[
                        0]  # [kg CO2]
                    PrimDiscBuild += dfBest[
                        "Primary Energy Needs [MJoil-eq]"].iloc[
                            0]  # [MJ-oil-eq]
                    Capex_Disconnected += dfBest[
                        "Annualized Investment Costs [CHF]"].iloc[0]
                    Opex_Disconnected += dfBest["Operation Costs [CHF]"].iloc[
                        0]
                    to_PV = 1
                    if dfBest["single effect ACH to AHU_SCU Share (FP)"].iloc[
                            0] == 1:
                        to_PV = 0
                    if dfBest["single effect ACH to AHU_SCU Share (ET)"].iloc[
                            0] == 1:
                        to_PV = 0

                if DCN_unit_configuration == 3:  # corresponds to SCU in the central plant, so remaining load need to be provided by decentralized plant
                    decentralized_configuration = 'AHU_ARU'
                    df = pd.read_csv(
                        locator.
                        get_optimization_disconnected_folder_building_result_cooling(
                            building_name, decentralized_configuration))
                    dfBest = df[df["Best configuration"] == 1]
                    CostDiscBuild += dfBest["Total Costs [CHF]"].iloc[
                        0]  # [CHF]
                    CO2DiscBuild += dfBest["CO2 Emissions [kgCO2-eq]"].iloc[
                        0]  # [kg CO2]
                    PrimDiscBuild += dfBest[
                        "Primary Energy Needs [MJoil-eq]"].iloc[
                            0]  # [MJ-oil-eq]
                    Capex_Disconnected += dfBest[
                        "Annualized Investment Costs [CHF]"].iloc[0]
                    Opex_Disconnected += dfBest["Operation Costs [CHF]"].iloc[
                        0]
                    to_PV = 1
                    if dfBest["single effect ACH to AHU_ARU Share (FP)"].iloc[
                            0] == 1:
                        to_PV = 0
                    if dfBest["single effect ACH to AHU_ARU Share (ET)"].iloc[
                            0] == 1:
                        to_PV = 0

                if DCN_unit_configuration == 4:  # corresponds to AHU + ARU in the central plant, so remaining load need to be provided by decentralized plant
                    decentralized_configuration = 'SCU'
                    df = pd.read_csv(
                        locator.
                        get_optimization_disconnected_folder_building_result_cooling(
                            building_name, decentralized_configuration))
                    dfBest = df[df["Best configuration"] == 1]
                    CostDiscBuild += dfBest["Total Costs [CHF]"].iloc[
                        0]  # [CHF]
                    CO2DiscBuild += dfBest["CO2 Emissions [kgCO2-eq]"].iloc[
                        0]  # [kg CO2]
                    PrimDiscBuild += dfBest[
                        "Primary Energy Needs [MJoil-eq]"].iloc[
                            0]  # [MJ-oil-eq]
                    Capex_Disconnected += dfBest[
                        "Annualized Investment Costs [CHF]"].iloc[0]
                    Opex_Disconnected += dfBest["Operation Costs [CHF]"].iloc[
                        0]
                    to_PV = 1
                    if dfBest["single effect ACH to SCU Share (FP)"].iloc[
                            0] == 1:
                        to_PV = 0
                    if dfBest["single effect ACH to SCU Share (ET)"].iloc[
                            0] == 1:
                        to_PV = 0

                if DCN_unit_configuration == 5:  # corresponds to AHU + SCU in the central plant, so remaining load need to be provided by decentralized plant
                    decentralized_configuration = 'ARU'
                    df = pd.read_csv(
                        locator.
                        get_optimization_disconnected_folder_building_result_cooling(
                            building_name, decentralized_configuration))
                    dfBest = df[df["Best configuration"] == 1]
                    CostDiscBuild += dfBest["Total Costs [CHF]"].iloc[
                        0]  # [CHF]
                    CO2DiscBuild += dfBest["CO2 Emissions [kgCO2-eq]"].iloc[
                        0]  # [kg CO2]
                    PrimDiscBuild += dfBest[
                        "Primary Energy Needs [MJoil-eq]"].iloc[
                            0]  # [MJ-oil-eq]
                    Capex_Disconnected += dfBest[
                        "Annualized Investment Costs [CHF]"].iloc[0]
                    Opex_Disconnected += dfBest["Operation Costs [CHF]"].iloc[
                        0]
                    to_PV = 1
                    if dfBest["single effect ACH to ARU Share (FP)"].iloc[
                            0] == 1:
                        to_PV = 0
                    if dfBest["single effect ACH to ARU Share (ET)"].iloc[
                            0] == 1:
                        to_PV = 0

                if DCN_unit_configuration == 6:  # corresponds to ARU + SCU in the central plant, so remaining load need to be provided by decentralized plant
                    decentralized_configuration = 'AHU'
                    df = pd.read_csv(
                        locator.
                        get_optimization_disconnected_folder_building_result_cooling(
                            building_name, decentralized_configuration))
                    dfBest = df[df["Best configuration"] == 1]
                    CostDiscBuild += dfBest["Total Costs [CHF]"].iloc[
                        0]  # [CHF]
                    CO2DiscBuild += dfBest["CO2 Emissions [kgCO2-eq]"].iloc[
                        0]  # [kg CO2]
                    PrimDiscBuild += dfBest[
                        "Primary Energy Needs [MJoil-eq]"].iloc[
                            0]  # [MJ-oil-eq]
                    Capex_Disconnected += dfBest[
                        "Annualized Investment Costs [CHF]"].iloc[0]
                    Opex_Disconnected += dfBest["Operation Costs [CHF]"].iloc[
                        0]
                    to_PV = 1
                    if dfBest["single effect ACH to AHU Share (FP)"].iloc[
                            0] == 1:
                        to_PV = 0
                    if dfBest["single effect ACH to AHU Share (ET)"].iloc[
                            0] == 1:
                        to_PV = 0

                if DCN_unit_configuration == 7:  # corresponds to AHU + ARU + SCU from central plant
                    to_PV = 1

                nBuildinNtw += 1
            PV_barcode = PV_barcode + str(to_PV)

    addcosts_Capex_a += CostDiscBuild
    addCO2 += CO2DiscBuild
    addPrim += PrimDiscBuild

    if not config.optimization.isheating:
        if PV_barcode.count("1") > 0:
            df1 = pd.DataFrame({'A': []})
            for (i, index) in enumerate(PV_barcode):
                if index == str(1):
                    if df1.empty:
                        data = pd.read_csv(locator.PV_results(buildList[i]))
                        df1 = data
                    else:
                        data = pd.read_csv(locator.PV_results(buildList[i]))
                        df1 = df1 + data
            if not df1.empty:
                df1.to_csv(locator.PV_network(PV_barcode),
                           index=True,
                           float_format='%.2f')

            solar_data = pd.read_csv(locator.PV_network(PV_barcode),
                                     usecols=['E_PV_gen_kWh', 'Area_PV_m2'],
                                     nrows=8760)
            E_PV_sum_kW = np.sum(solar_data['E_PV_gen_kWh'])
            E_PV_W = solar_data['E_PV_gen_kWh'] * 1000
            Area_AvailablePV_m2 = np.max(solar_data['Area_PV_m2'])
            Q_PowerPeakAvailablePV_kW = Area_AvailablePV_m2 * ETA_AREA_TO_PEAK
            KEV_RpPerkWhPV = calc_Crem_pv(Q_PowerPeakAvailablePV_kW * 1000.0)
            KEV_total = KEV_RpPerkWhPV / 100 * np.sum(E_PV_sum_kW)

            addcosts_Capex_a = addcosts_Capex_a - KEV_total
            addCO2 = addCO2 - (E_PV_sum_kW * 1000 *
                               (lca.EL_PV_TO_CO2 - lca.EL_TO_CO2_GREEN) *
                               WH_TO_J / 1.0E6)
            addPrim = addPrim - (E_PV_sum_kW * 1000 *
                                 (lca.EL_PV_TO_OIL_EQ - lca.EL_TO_OIL_EQ_GREEN)
                                 * WH_TO_J / 1.0E6)

            cost_PV_disconnected = KEV_total
            CO2_PV_disconnected = (E_PV_sum_kW * 1000 *
                                   (lca.EL_PV_TO_CO2 - lca.EL_TO_CO2_GREEN) *
                                   WH_TO_J / 1.0E6)
            Eprim_PV_disconnected = (
                E_PV_sum_kW * 1000 *
                (lca.EL_PV_TO_OIL_EQ - lca.EL_TO_OIL_EQ_GREEN) * WH_TO_J /
                1.0E6)

            network_data = pd.read_csv(
                locator.get_optimization_network_data_folder(
                    master_to_slave_vars.network_data_file_cooling))

            E_total_req_W = np.array(network_data['Electr_netw_total_W'])
            cooling_data = pd.read_csv(
                locator.get_optimization_slave_cooling_activation_pattern(
                    master_to_slave_vars.individual_number,
                    master_to_slave_vars.generation_number))

            E_from_CHP_W = np.array(cooling_data[
                'E_gen_CCGT_associated_with_absorption_chillers_W'])
            E_CHP_to_directload_W = np.zeros(8760)
            E_CHP_to_grid_W = np.zeros(8760)
            E_PV_to_directload_W = np.zeros(8760)
            E_PV_to_grid_W = np.zeros(8760)
            E_from_grid_W = np.zeros(8760)

            for hour in range(8760):
                E_hour_W = E_total_req_W[hour]
                if E_hour_W > 0:
                    if E_PV_W[hour] > E_hour_W:
                        E_PV_to_directload_W[hour] = E_hour_W
                        E_PV_to_grid_W[
                            hour] = E_PV_W[hour] - E_total_req_W[hour]
                        E_hour_W = 0
                    else:
                        E_hour_W = E_hour_W - E_PV_W[hour]
                        E_PV_to_directload_W[hour] = E_PV_W[hour]

                    if E_from_CHP_W[hour] > E_hour_W:
                        E_CHP_to_directload_W[hour] = E_hour_W
                        E_CHP_to_grid_W[hour] = E_from_CHP_W[hour] - E_hour_W
                        E_hour_W = 0
                    else:
                        E_hour_W = E_hour_W - E_from_CHP_W[hour]
                        E_CHP_to_directload_W[hour] = E_from_CHP_W[hour]

                    E_from_grid_W[hour] = E_hour_W

            date = network_data.DATE.values
            results = pd.DataFrame({
                "DATE":
                date,
                "E_total_req_W":
                E_total_req_W,
                "E_PV_W":
                solar_data['E_PV_gen_kWh'] * 1000,
                "Area_PV_m2":
                solar_data['Area_PV_m2'],
                "KEV":
                KEV_RpPerkWhPV / 100 * solar_data['E_PV_gen_kWh'],
                "E_from_grid_W":
                E_from_grid_W,
                "E_PV_to_directload_W":
                E_PV_to_directload_W,
                "E_CHP_to_directload_W":
                E_CHP_to_directload_W,
                "E_CHP_to_grid_W":
                E_CHP_to_grid_W,
                "E_PV_to_grid_W":
                E_PV_to_grid_W
            })

            results.to_csv(
                locator.
                get_optimization_slave_electricity_activation_pattern_cooling(
                    master_to_slave_vars.individual_number,
                    master_to_slave_vars.generation_number),
                index=False)

    # Add the features for the distribution

    if DHN_barcode.count("1") > 0 and config.optimization.isheating:
        os.chdir(
            locator.get_optimization_slave_results_folder(
                master_to_slave_vars.generation_number))
        # Add the investment costs of the energy systems
        # Furnace
        if master_to_slave_vars.Furnace_on == 1:
            P_design_W = master_to_slave_vars.Furnace_Q_max

            fNameSlavePP = locator.get_optimization_slave_heating_activation_pattern_heating(
                master_to_slave_vars.configKey,
                master_to_slave_vars.individual_number,
                master_to_slave_vars.generation_number)
            dfFurnace = pd.read_csv(fNameSlavePP, usecols=["Q_Furnace_W"])
            arrayFurnace_W = np.array(dfFurnace)

            Q_annual_W = 0
            for i in range(int(np.shape(arrayFurnace_W)[0])):
                Q_annual_W += arrayFurnace_W[i][0]

            Capex_a_furnace, Opex_fixed_furnace = furnace.calc_Cinv_furnace(
                P_design_W, Q_annual_W, config, locator, 'FU1')
            addcosts_Capex_a += Capex_a_furnace
            addcosts_Opex_fixed += Opex_fixed_furnace

        # CC
        if master_to_slave_vars.CC_on == 1:
            CC_size_W = master_to_slave_vars.CC_GT_SIZE
            Capex_a_CHP, Opex_fixed_CHP = chp.calc_Cinv_CCGT(
                CC_size_W, locator, config)
            addcosts_Capex_a += Capex_a_CHP
            addcosts_Opex_fixed += Opex_fixed_CHP

        # Boiler Base
        if master_to_slave_vars.Boiler_on == 1:
            Q_design_W = master_to_slave_vars.Boiler_Q_max

            fNameSlavePP = locator.get_optimization_slave_heating_activation_pattern(
                master_to_slave_vars.individual_number,
                master_to_slave_vars.generation_number)
            dfBoilerBase = pd.read_csv(fNameSlavePP,
                                       usecols=["Q_BaseBoiler_W"])
            arrayBoilerBase_W = np.array(dfBoilerBase)

            Q_annual_W = 0
            for i in range(int(np.shape(arrayBoilerBase_W)[0])):
                Q_annual_W += arrayBoilerBase_W[i][0]

            Capex_a_Boiler, Opex_fixed_Boiler = boiler.calc_Cinv_boiler(
                Q_design_W, locator, config, 'BO1')
            addcosts_Capex_a += Capex_a_Boiler
            addcosts_Opex_fixed += Opex_fixed_Boiler

        # Boiler Peak
        if master_to_slave_vars.BoilerPeak_on == 1:
            Q_design_W = master_to_slave_vars.BoilerPeak_Q_max

            fNameSlavePP = locator.get_optimization_slave_heating_activation_pattern(
                master_to_slave_vars.individual_number,
                master_to_slave_vars.generation_number)
            dfBoilerPeak = pd.read_csv(fNameSlavePP,
                                       usecols=["Q_PeakBoiler_W"])
            arrayBoilerPeak_W = np.array(dfBoilerPeak)

            Q_annual_W = 0
            for i in range(int(np.shape(arrayBoilerPeak_W)[0])):
                Q_annual_W += arrayBoilerPeak_W[i][0]
            Capex_a_Boiler_peak, Opex_fixed_Boiler_peak = boiler.calc_Cinv_boiler(
                Q_design_W, locator, config, 'BO1')
            addcosts_Capex_a += Capex_a_Boiler_peak
            addcosts_Opex_fixed += Opex_fixed_Boiler_peak

        # HP Lake
        if master_to_slave_vars.HP_Lake_on == 1:
            HP_Size_W = master_to_slave_vars.HPLake_maxSize
            Capex_a_Lake, Opex_fixed_Lake = hp.calc_Cinv_HP(
                HP_Size_W, locator, config, 'HP2')
            addcosts_Capex_a += Capex_a_Lake
            addcosts_Opex_fixed += Opex_fixed_Lake

        # HP Sewage
        if master_to_slave_vars.HP_Sew_on == 1:
            HP_Size_W = master_to_slave_vars.HPSew_maxSize
            Capex_a_Sewage, Opex_fixed_Sewage = hp.calc_Cinv_HP(
                HP_Size_W, locator, config, 'HP2')
            addcosts_Capex_a += Capex_a_Sewage
            addcosts_Opex_fixed += Opex_fixed_Sewage

        # GHP
        if master_to_slave_vars.GHP_on == 1:
            fNameSlavePP = locator.get_optimization_slave_electricity_activation_pattern_heating(
                master_to_slave_vars.individual_number,
                master_to_slave_vars.generation_number)
            dfGHP = pd.read_csv(fNameSlavePP, usecols=["E_GHP_req_W"])
            arrayGHP_W = np.array(dfGHP)

            GHP_Enom_W = np.amax(arrayGHP_W)
            Capex_a_GHP, Opex_fixed_GHP = hp.calc_Cinv_GHP(
                GHP_Enom_W, locator, config)
            addcosts_Capex_a += Capex_a_GHP * prices.EURO_TO_CHF
            addcosts_Opex_fixed += Opex_fixed_GHP * prices.EURO_TO_CHF

        # Solar technologies

        PV_installed_area_m2 = master_to_slave_vars.SOLAR_PART_PV * solarFeat.A_PV_m2  #kW
        Capex_a_PV, Opex_fixed_PV = pv.calc_Cinv_pv(PV_installed_area_m2,
                                                    locator, config)
        addcosts_Capex_a += Capex_a_PV
        addcosts_Opex_fixed += Opex_fixed_PV

        SC_ET_area_m2 = master_to_slave_vars.SOLAR_PART_SC_ET * solarFeat.A_SC_ET_m2
        Capex_a_SC_ET, Opex_fixed_SC_ET = stc.calc_Cinv_SC(
            SC_ET_area_m2, locator, config, 'ET')
        addcosts_Capex_a += Capex_a_SC_ET
        addcosts_Opex_fixed += Opex_fixed_SC_ET

        SC_FP_area_m2 = master_to_slave_vars.SOLAR_PART_SC_FP * solarFeat.A_SC_FP_m2
        Capex_a_SC_FP, Opex_fixed_SC_FP = stc.calc_Cinv_SC(
            SC_FP_area_m2, locator, config, 'FP')
        addcosts_Capex_a += Capex_a_SC_FP
        addcosts_Opex_fixed += Opex_fixed_SC_FP

        PVT_peak_kW = master_to_slave_vars.SOLAR_PART_PVT * solarFeat.A_PVT_m2 * N_PVT  #kW
        Capex_a_PVT, Opex_fixed_PVT = pvt.calc_Cinv_PVT(
            PVT_peak_kW, locator, config)
        addcosts_Capex_a += Capex_a_PVT
        addcosts_Opex_fixed += Opex_fixed_PVT

        # Back-up boiler
        Capex_a_Boiler_backup, Opex_fixed_Boiler_backup = boiler.calc_Cinv_boiler(
            Q_uncovered_design_W, locator, config, 'BO1')
        addcosts_Capex_a += Capex_a_Boiler_backup
        addcosts_Opex_fixed += Opex_fixed_Boiler_backup

        # Hex and HP for Heat recovery
        if master_to_slave_vars.WasteServersHeatRecovery == 1:
            df = pd.read_csv(os.path.join(
                locator.get_optimization_network_results_folder(),
                master_to_slave_vars.network_data_file_heating),
                             usecols=["Qcdata_netw_total_kWh"])
            array = np.array(df)
            Q_HEX_max_kWh = np.amax(array)
            Capex_a_wasteserver_HEX, Opex_fixed_wasteserver_HEX = hex.calc_Cinv_HEX(
                Q_HEX_max_kWh, locator, config, 'HEX1')
            addcosts_Capex_a += (Capex_a_wasteserver_HEX)
            addcosts_Opex_fixed += Opex_fixed_wasteserver_HEX

            df = pd.read_csv(
                locator.get_optimization_slave_storage_operation_data(
                    master_to_slave_vars.individual_number,
                    master_to_slave_vars.generation_number),
                usecols=["HPServerHeatDesignArray_kWh"])
            array = np.array(df)
            Q_HP_max_kWh = np.amax(array)
            Capex_a_wasteserver_HP, Opex_fixed_wasteserver_HP = hp.calc_Cinv_HP(
                Q_HP_max_kWh, locator, config, 'HP2')
            addcosts_Capex_a += (Capex_a_wasteserver_HP)
            addcosts_Opex_fixed += Opex_fixed_wasteserver_HP

        # if master_to_slave_vars.WasteCompressorHeatRecovery == 1:
        #     df = pd.read_csv(
        #         os.path.join(locator.get_optimization_network_results_folder(), master_to_slave_vars.network_data_file_heating),
        #         usecols=["Ecaf_netw_total_kWh"])
        #     array = np.array(df)
        #     Q_HEX_max_kWh = np.amax(array)
        #
        #     Capex_a_wastecompressor_HEX, Opex_fixed_wastecompressor_HEX = hex.calc_Cinv_HEX(Q_HEX_max_kWh, locator,
        #                                                                                     config, 'HEX1')
        #     addcosts_Capex_a += (Capex_a_wastecompressor_HEX)
        #     addcosts_Opex_fixed += Opex_fixed_wastecompressor_HEX
        #     df = pd.read_csv(
        #         locator.get_optimization_slave_storage_operation_data(master_to_slave_vars.individual_number,
        #                                                               master_to_slave_vars.generation_number),
        #         usecols=["HPCompAirDesignArray_kWh"])
        #     array = np.array(df)
        #     Q_HP_max_kWh = np.amax(array)
        #     Capex_a_wastecompressor_HP, Opex_fixed_wastecompressor_HP = hp.calc_Cinv_HP(Q_HP_max_kWh, locator, config, 'HP2')
        #     addcosts_Capex_a += (Capex_a_wastecompressor_HP)
        #     addcosts_Opex_fixed += Opex_fixed_wastecompressor_HP

        # Heat pump from solar to DH
        df = pd.read_csv(
            locator.get_optimization_slave_storage_operation_data(
                master_to_slave_vars.individual_number,
                master_to_slave_vars.generation_number),
            usecols=["HPScDesignArray_Wh", "HPpvt_designArray_Wh"])
        array = np.array(df)
        Q_HP_max_PVT_wh = np.amax(array[:, 1])
        Q_HP_max_SC_Wh = np.amax(array[:, 0])
        Capex_a_HP_PVT, Opex_fixed_HP_PVT = hp.calc_Cinv_HP(
            Q_HP_max_PVT_wh, locator, config, 'HP2')
        Capex_a_storage_HP += (Capex_a_HP_PVT)
        addcosts_Opex_fixed += Opex_fixed_HP_PVT

        Capex_a_HP_SC, Opex_fixed_HP_SC = hp.calc_Cinv_HP(
            Q_HP_max_SC_Wh, locator, config, 'HP2')
        Capex_a_storage_HP += (Capex_a_HP_SC)
        addcosts_Opex_fixed += Opex_fixed_HP_SC

        # HP for storage operation for charging from solar and discharging to DH
        df = pd.read_csv(locator.get_optimization_slave_storage_operation_data(
            master_to_slave_vars.individual_number,
            master_to_slave_vars.generation_number),
                         usecols=[
                             "E_aux_ch_W", "E_aux_dech_W",
                             "Q_from_storage_used_W", "Q_to_storage_W"
                         ])
        array = np.array(df)
        Q_HP_max_storage_W = 0
        for i in range(DAYS_IN_YEAR * HOURS_IN_DAY):
            if array[i][0] > 0:
                Q_HP_max_storage_W = max(Q_HP_max_storage_W,
                                         array[i][3] + array[i][0])
            elif array[i][1] > 0:
                Q_HP_max_storage_W = max(Q_HP_max_storage_W,
                                         array[i][2] + array[i][1])

        Capex_a_HP_storage, Opex_fixed_HP_storage = hp.calc_Cinv_HP(
            Q_HP_max_storage_W, locator, config, 'HP2')
        addcosts_Capex_a += (Capex_a_HP_storage)
        addcosts_Opex_fixed += Opex_fixed_HP_storage

        # Storage
        df = pd.read_csv(locator.get_optimization_slave_storage_operation_data(
            master_to_slave_vars.individual_number,
            master_to_slave_vars.generation_number),
                         usecols=["Storage_Size_m3"],
                         nrows=1)
        StorageVol_m3 = np.array(df)[0][0]
        Capex_a_storage, Opex_fixed_storage = storage.calc_Cinv_storage(
            StorageVol_m3, locator, config, 'TES2')
        addcosts_Capex_a += Capex_a_storage
        addcosts_Opex_fixed += Opex_fixed_storage

        # Costs from distribution configuration
        if gv.ZernezFlag == 1:
            NetworkCost += network.calc_Cinv_network_linear(
                gv.NetworkLengthZernez, gv) * nBuildinNtw / len(buildList)
        else:
            NetworkCost += ntwFeat.pipesCosts_DHN * nBuildinNtw / len(
                buildList)
        addcosts_Capex_a += NetworkCost

        # HEX (1 per building in ntw)
        for (index, building_name) in zip(DHN_barcode, buildList):
            if index == "1":
                df = pd.read_csv(
                    locator.get_optimization_substations_results_file(
                        building_name),
                    usecols=["Q_dhw_W", "Q_heating_W"])
                subsArray = np.array(df)

                Q_max_W = np.amax(subsArray[:, 0] + subsArray[:, 1])
                Capex_a_HEX_building, Opex_fixed_HEX_building = hex.calc_Cinv_HEX(
                    Q_max_W, locator, config, 'HEX1')
                addcosts_Capex_a += Capex_a_HEX_building
                addcosts_Opex_fixed += Opex_fixed_HEX_building

        # HEX for solar
        roof_area_m2 = np.array(
            pd.read_csv(locator.get_total_demand(), usecols=["Aroof_m2"]))

        areaAvail = 0
        for i in range(len(DHN_barcode)):
            index = DHN_barcode[i]
            if index == "1":
                areaAvail += roof_area_m2[i][0]

        for i in range(len(DHN_barcode)):
            index = DHN_barcode[i]
            if index == "1":
                share = roof_area_m2[i][0] / areaAvail
                #print share, "solar area share", buildList[i]

                Q_max_SC_ET_Wh = solarFeat.Q_nom_SC_ET_Wh * master_to_slave_vars.SOLAR_PART_SC_ET * share
                Capex_a_HEX_SC_ET, Opex_fixed_HEX_SC_ET = hex.calc_Cinv_HEX(
                    Q_max_SC_ET_Wh, locator, config, 'HEX1')
                addcosts_Capex_a += Capex_a_HEX_SC_ET
                addcosts_Opex_fixed += Opex_fixed_HEX_SC_ET

                Q_max_SC_FP_Wh = solarFeat.Q_nom_SC_FP_Wh * master_to_slave_vars.SOLAR_PART_SC_FP * share
                Capex_a_HEX_SC_FP, Opex_fixed_HEX_SC_FP = hex.calc_Cinv_HEX(
                    Q_max_SC_FP_Wh, locator, config, 'HEX1')
                addcosts_Capex_a += Capex_a_HEX_SC_FP
                addcosts_Opex_fixed += Opex_fixed_HEX_SC_FP

                Q_max_PVT_Wh = solarFeat.Q_nom_PVT_Wh * master_to_slave_vars.SOLAR_PART_PVT * share
                Capex_a_HEX_PVT, Opex_fixed_HEX_PVT = hex.calc_Cinv_HEX(
                    Q_max_PVT_Wh, locator, config, 'HEX1')
                addcosts_Capex_a += Capex_a_HEX_PVT
                addcosts_Opex_fixed += Opex_fixed_HEX_PVT

    # Pump operation costs
    Capex_a_pump, Opex_fixed_pump, Opex_var_pump = pumps.calc_Ctot_pump(
        master_to_slave_vars, ntwFeat, gv, locator, lca, config)
    addcosts_Capex_a += Capex_a_pump
    addcosts_Opex_fixed += Opex_fixed_pump

    # import gas consumption data from:
    if DHN_barcode.count("1") > 0 and config.optimization.isheating:
        # import gas consumption data from:
        EgasPrimaryDataframe_W = pd.read_csv(
            locator.get_optimization_slave_cost_prime_primary_energy_data(
                master_to_slave_vars.individual_number,
                master_to_slave_vars.generation_number),
            usecols=["E_gas_PrimaryPeakPower_W"])
        E_gas_primary_peak_power_W = float(np.array(EgasPrimaryDataframe_W))
        GasConnectionInvCost = ngas.calc_Cinv_gas(E_gas_primary_peak_power_W,
                                                  gv)
    else:
        GasConnectionInvCost = 0.0

    addcosts_Capex_a += GasConnectionInvCost
    # Save data
    results = pd.DataFrame({
        "Capex_a_SC": [Capex_a_SC],
        "Opex_fixed_SC": [Opex_fixed_SC],
        "Capex_a_PVT": [Capex_a_PVT],
        "Opex_fixed_PVT": [Opex_fixed_PVT],
        "Capex_a_Boiler_backup": [Capex_a_Boiler_backup],
        "Opex_fixed_Boiler_backup": [Opex_fixed_Boiler_backup],
        "Capex_a_storage_HEX": [Capex_a_HP_storage],
        "Opex_fixed_storage_HEX": [Opex_fixed_HP_storage],
        "Capex_a_storage_HP": [Capex_a_storage_HP],
        "Capex_a_CHP": [Capex_a_CHP],
        "Opex_fixed_CHP": [Opex_fixed_CHP],
        "StorageInvC": [StorageInvC],
        "StorageCostSum": [StorageInvC + Capex_a_storage_HP + Capex_a_HEX],
        "NetworkCost": [NetworkCost],
        "SubstHEXCost": [SubstHEXCost_capex],
        "DHNInvestCost": [addcosts_Capex_a - CostDiscBuild],
        "PVTHEXCost_Capex": [PVTHEXCost_Capex],
        "CostDiscBuild": [CostDiscBuild],
        "CO2DiscBuild": [CO2DiscBuild],
        "PrimDiscBuild": [PrimDiscBuild],
        "Capex_a_furnace": [Capex_a_furnace],
        "Opex_fixed_furnace": [Opex_fixed_furnace],
        "Capex_a_Boiler": [Capex_a_Boiler],
        "Opex_fixed_Boiler": [Opex_fixed_Boiler],
        "Capex_a_Boiler_peak": [Capex_a_Boiler_peak],
        "Opex_fixed_Boiler_peak": [Opex_fixed_Boiler_peak],
        "Capex_Disconnected": [Capex_Disconnected],
        "Opex_Disconnected": [Opex_Disconnected],
        "Capex_a_Lake": [Capex_a_Lake],
        "Opex_fixed_Lake": [Opex_fixed_Lake],
        "Capex_a_Sewage": [Capex_a_Sewage],
        "Opex_fixed_Sewage": [Opex_fixed_Sewage],
        "SCHEXCost_Capex": [SCHEXCost_Capex],
        "Capex_a_pump": [Capex_a_pump],
        "Opex_fixed_pump": [Opex_fixed_pump],
        "Opex_var_pump": [Opex_var_pump],
        "Sum_CAPEX": [addcosts_Capex_a],
        "Sum_OPEX_fixed": [addcosts_Opex_fixed],
        "GasConnectionInvCa": [GasConnectionInvCost],
        "CO2_PV_disconnected": [CO2_PV_disconnected],
        "cost_PV_disconnected": [cost_PV_disconnected],
        "Eprim_PV_disconnected": [Eprim_PV_disconnected]
    })
    results.to_csv(locator.get_optimization_slave_investment_cost_detailed(
        master_to_slave_vars.individual_number,
        master_to_slave_vars.generation_number),
                   sep=',')
    return (addcosts_Capex_a + addcosts_Opex_fixed, addCO2, addPrim)