示例#1
0
def test_group_lasso_lasso(sparse_X, fit_intercept, normalize):
    # check that group Lasso with groups of size 1 gives Lasso
    n_features = 1000
    X, y = build_dataset(n_samples=100,
                         n_features=n_features,
                         sparse_X=sparse_X)[:2]
    alpha_max = norm(X.T @ y, ord=np.inf) / len(y)
    alpha = alpha_max / 10
    clf = Lasso(alpha,
                tol=1e-12,
                fit_intercept=fit_intercept,
                normalize=normalize,
                verbose=0)
    clf.fit(X, y)
    # take groups of size 1:

    clf1 = GroupLasso(alpha=alpha,
                      groups=1,
                      tol=1e-12,
                      fit_intercept=fit_intercept,
                      normalize=normalize,
                      verbose=0)
    clf1.fit(X, y)

    np.testing.assert_allclose(clf1.coef_, clf.coef_, atol=1e-6)
    np.testing.assert_allclose(clf1.intercept_, clf.intercept_, rtol=1e-4)
示例#2
0
def test_GroupLasso(sparse_X):
    n_features = 50
    X, y = build_dataset(n_samples=11,
                         n_features=n_features,
                         sparse_X=sparse_X,
                         n_informative_features=n_features)[:2]

    tol = 1e-4
    clf = GroupLasso(alpha=0.01, groups=10, tol=tol)
    clf.fit(X, y)
    np.testing.assert_array_less(clf.dual_gap_, tol)
示例#3
0
文件: test_mtl.py 项目: mindis/celer
def test_GroupLasso(sparse_X):
    n_features = 50
    X, y = build_dataset(
        n_samples=11, n_features=n_features, sparse_X=sparse_X)

    tol = 1e-8
    clf = GroupLasso(alpha=0.8, groups=10, tol=tol)
    clf.fit(X, y)
    np.testing.assert_array_less(clf.dual_gap_, tol)

    clf.tol = 1e-6
    clf.groups = 1  # unsatisfying but sklearn will fit out of 5 features
    check_estimator(clf)
示例#4
0
def test_group_lasso_multitask():
    "Group Lasso and Multitask Lasso equivalence." ""
    n_samples, n_features = 30, 50
    X_, Y_ = build_dataset(n_samples,
                           n_features,
                           n_informative_features=n_features,
                           n_targets=3)[:2]
    y = Y_.reshape(-1, order='F')
    X = np.zeros([3 * n_samples, 3 * n_features], order='F')

    # block filling new design
    for i in range(3):
        X[i * n_samples:(i + 1) * n_samples,
          i * n_features:(i + 1) * n_features] = X_

    grp_indices = np.arange(3 * n_features).reshape(3, -1).reshape(
        -1, order='F').astype(np.int32)
    grp_ptr = 3 * np.arange(n_features + 1).astype(np.int32)

    alpha_max = np.max(norm(X_.T @ Y_, axis=1)) / len(Y_)

    X_data = np.empty([1], dtype=X.dtype)
    X_indices = np.empty([1], dtype=np.int32)
    X_indptr = np.empty([1], dtype=np.int32)
    other = dscal_grp(False, y, grp_ptr, grp_indices, X, X_data, X_indices,
                      X_indptr, X_data,
                      len(grp_ptr) - 1, np.zeros(1, dtype=np.int32), False)
    np.testing.assert_allclose(alpha_max, other / len(Y_))

    alpha = alpha_max / 10
    clf = MultiTaskLasso(alpha, fit_intercept=False, tol=1e-8)
    clf.fit(X_, Y_)

    groups = [grp.tolist() for grp in grp_indices.reshape(50, 3)]
    clf1 = GroupLasso(alpha=alpha / 3,
                      groups=groups,
                      fit_intercept=False,
                      tol=1e-8)
    clf1.fit(X, y)

    np.testing.assert_allclose(clf1.coef_, clf.coef_.reshape(-1), atol=1e-4)
示例#5
0
# Create true regression coefficients with 3 groups of 5 non-zero values

w_true = np.zeros(n_features)
w_true[:5] = 1
w_true[20:25] = -2
w_true[40:45] = 1
y = X @ w_true + rng.randn(n_samples)


# Fit an adapted GroupLasso model

groups = 5  # groups are contiguous and of size 5
# irregular groups are also supported,
clf = GroupLasso(groups=groups, alpha=1.1)
clf.fit(X, y)

###############################################################################
# Display results

fig = plt.figure(figsize=(10, 4))
m, s, _ = plt.stem(w_true, label=r"true regression coefficients",
                   use_line_collection=True)
m, s, _ = plt.stem(clf.coef_, label=r"estimated regression coefficients",
                   markerfmt='x', use_line_collection=True)
plt.setp([m, s], color='#ff7f0e')
plt.xlabel("feature index")
plt.legend()
plt.show(block=False)