示例#1
0
    def test_log_likelihood_coupled(self):
        """Tests that log_likelihood_coupled function returns a reasonable estimate"""
        test_params = [0.03178564, 0.00310762, 0.00017541, 0.00022762]

        path = io.get_data_file_path('simulated_coupled_6x6.pkl')
        testdata = celldensity.CellDen(pd.read_pickle(path))
        mu_n = -0.15
        sigma_n = 0.1

        val = model.log_likelihood_coupled(test_params, testdata, mu_n,
                                           sigma_n)
        np.testing.assert_almost_equal(val, -10289.069087654105, 4)
示例#2
0
def read(data_file,
         CellA,
         CellB,
         BinDiv,
         ImgWidth=1024,
         time_scale=0.25,
         length_scale=1.33):
    '''
    Parameters:
    -----------
    data_file: the .csv file containing the data with the following columns
        Identity Labeling:
            Column 0:'ImageNumber': denoting the time step image
            Column 1: 'ObjectNumber': denoting the arbitrary identity of the cell
        Intensity classifications:
            'Classify_Intensity_UpperQuartileIntensity_CellA_high_Intensity_UpperQuartileIntensity_CellB_high'
            'Classify_Intensity_UpperQuartileIntensity_CellA_high_Intensity_UpperQuartileIntensity_CellB_low'
            'Classify_Intensity_UpperQuartileIntensity_CellA_low_Intensity_UpperQuartileIntensity_CellB_high'
            'Classify_Intensity_UpperQuartileIntensity_CellA_low_Intensity_UpperQuartileIntensity_CellB_low'
            where the order of CellA and CellB should be the same as that of the input parameter
        Locations:
            'Location_Center_X'
            'Location_Center_Y'

    CellA: Name of the first cell type, e.g.'Sox2'
    CellB: Name of the second cell type, e.g. 'Oct4'
    BinDiv: An integer telling the function to divide the orginal cell image into BinDiv x BinDiv bins
    ImgWidth: the width dimension of the image in pixels (e.g. for an image of 1024x1024, just enter 1024)
    time_scale: time scale of each time step between subsequent images, in hours
    length_scale: linear size scale of the image, in mm

    Returns:
    -----------
    An object with the following attributes:

    CellDen.data: A dataframe with the density of different types of cells in the bins of the
    original cell image at different time t.The format of the output dataframe would be like --
        Rows-> time index
        Main Column-> cell types
        Sub Column-> bin index

    CellDen.cellname: a tuple of the first and second cell name
    CellDen.bin_num: total bin number
    CellDen.tot_time: total time step of the experiment
    CellDen.time_scale: time scale between subsequent time steps, in hours
    CellDen.length_scale: linear size scale of the image, in mm
    '''
    data = celldensity.cell_density(data_file, CellA, CellB, BinDiv, ImgWidth)
    return celldensity.CellDen(data, time_scale, length_scale)