def mark_dupes(bc, gene_id, reads, args, dupe_type, dupe_func, reporter, corrected_dupe_keys=None, out_bam=None): mark = dupe_type == cr_constants.CDNA_PCR_DUPE_TYPE assert not mark or (corrected_dupe_keys is not None and out_bam is not None) dupe_key_umi_counts = collections.defaultdict(dict) for read in reads: read.is_duplicate = False if cr_utils.is_read_dupe_candidate(read, cr_utils.get_high_conf_mapq(args.align)): dupe_key = dupe_func(read) umi_counts = dupe_key_umi_counts[dupe_key] umi = cr_utils.get_read_umi(read) if corrected_dupe_keys and dupe_key in corrected_dupe_keys and umi in corrected_dupe_keys[dupe_key]: corrected_umi = corrected_dupe_keys[dupe_key][umi] cr_utils.set_tag(read, cr_constants.PROCESSED_UMI_TAG, umi, corrected_umi) umi = corrected_umi if umi in umi_counts: read.is_duplicate = True umi_counts[umi] += 1 else: umi_counts[umi] = 1 if mark: reporter.mark_dupes_corrected_cb(read) out_bam.write(read) reporter.mark_dupes_bam_cb(read, dupe_type) for _, umis in dupe_key_umi_counts.iteritems(): reporter.mark_dupes_group_cb(gene_id, umis, dupe_type) return dupe_key_umi_counts
def main(args, outs): outs.coerce_strings() in_bam = tk_bam.create_bam_infile(args.input_bam) out_bam, _ = tk_bam.create_bam_outfile(outs.output, None, None, template=in_bam) cell_bcs = set(cr_utils.load_barcode_tsv(args.cell_barcodes)) for (tid, pos), reads_iter in itertools.groupby(in_bam, key=cr_utils.pos_sort_key): dupe_keys = set() for read in reads_iter: if cr_utils.get_read_barcode(read) not in cell_bcs: continue if cr_utils.is_read_dupe_candidate( read, cr_utils.get_high_conf_mapq(args.align)): dupe_key = (cr_utils.si_pcr_dupe_func(read), cr_utils.get_read_umi(read)) if dupe_key in dupe_keys: continue dupe_keys.add(dupe_key) out_bam.write(read)
def main(args, outs): outs.coerce_strings() in_bam = tk_bam.create_bam_infile(args.possorted_bam) in_bam_chunk = tk_bam.read_bam_chunk(in_bam, (args.chunk_start, args.chunk_end)) out_bam, _ = tk_bam.create_bam_outfile(outs.filtered_bam, None, None, template=in_bam) cluster_bcs = set(args.cluster_bcs) for (tid, pos), reads_iter in itertools.groupby(in_bam_chunk, key=cr_utils.pos_sort_key): dupe_keys = set() for read in reads_iter: if cr_utils.get_read_barcode(read) not in cluster_bcs: continue if cr_utils.is_read_dupe_candidate(read, cr_utils.get_high_conf_mapq({"high_conf_mapq":60})): dupe_key = (cr_utils.si_pcr_dupe_func(read), cr_utils.get_read_umi(read)) if dupe_key in dupe_keys: continue dupe_keys.add(dupe_key) read.is_duplicate = False out_bam.write(read)
def main(args, outs): outs.coerce_strings() # Load whitelist whitelist = cr_utils.load_barcode_whitelist(args.barcode_whitelist) barcode_to_idx = OrderedDict((k, i) for i, k in enumerate(whitelist)) # Load feature reference feature_ref = rna_feature_ref.from_transcriptome_and_csv( args.reference_path, args.feature_reference) # Load library info from BAM in_bam = tk_bam.create_bam_infile(args.chunk_input) library_info = rna_library.get_bam_library_info(in_bam) # Get cell-associated barcodes by genome filtered_bcs_by_genome = cr_utils.load_barcode_csv(args.filtered_barcodes) filtered_bc_union = cr_utils.get_cell_associated_barcode_set( args.filtered_barcodes) # Create the barcode info barcode_info = MoleculeCounter.build_barcode_info(filtered_bcs_by_genome, library_info, whitelist) # Create the molecule info file mc = MoleculeCounter.open(outs.output, mode='w', feature_ref=feature_ref, barcodes=whitelist, library_info=library_info, barcode_info=barcode_info) # Initialize per-library metrics lib_metrics = {} for lib_idx in xrange(len(library_info)): lib_metrics[str(lib_idx)] = {} lib_metrics[str(lib_idx)][cr_mol_counter.USABLE_READS_METRIC] = 0 # Record read-counts per molecule. Note that UMIs are not contiguous # in the input because no sorting was done after UMI correction. prev_gem_group = None prev_barcode_idx = None for (gem_group, barcode_seq), reads_iter in \ itertools.groupby(in_bam, key=cr_utils.barcode_sort_key_no_umi): if barcode_seq is None: continue barcode_idx = barcode_to_idx[barcode_seq] # Assert expected sort order of input BAM assert gem_group >= prev_gem_group if gem_group == prev_gem_group: assert barcode_idx >= prev_barcode_idx is_cell_barcode = cr_utils.format_barcode_seq( barcode_seq, gem_group) in filtered_bc_union counts = defaultdict(int) for read in reads_iter: # ignore read2 to avoid double-counting. the mapping + annotation should be equivalent. if read.is_secondary or \ read.is_read2 or \ cr_utils.is_read_low_support_umi(read) or \ not cr_utils.is_read_conf_mapped_to_feature(read): continue umi_seq = cr_utils.get_read_umi(read) if umi_seq is None: continue umi_int = MoleculeCounter.compress_umi_seq( umi_seq, MoleculeCounter.get_column_dtype('umi').itemsize * 8) feature_ids = cr_utils.get_read_gene_ids(read) assert len(feature_ids) == 1 feature_int = feature_ref.id_map[feature_ids[0]].index library_idx = cr_utils.get_read_library_index(read) counts[(umi_int, library_idx, feature_int)] += 1 if is_cell_barcode: lib_metrics[str(library_idx)][ cr_mol_counter.USABLE_READS_METRIC] += 1 prev_gem_group = gem_group prev_barcode_idx = barcode_idx # Record data for this barcode gg_int = MoleculeCounter.get_column_dtype('gem_group').type(gem_group) mc.append_column('gem_group', np.repeat(gg_int, len(counts))) bc_int = MoleculeCounter.get_column_dtype('barcode_idx').type( barcode_idx) mc.append_column('barcode_idx', np.repeat(bc_int, len(counts))) feature_ints = np.fromiter( (k[2] for k in counts.iterkeys()), dtype=MoleculeCounter.get_column_dtype('feature_idx'), count=len(counts)) # Sort by feature for fast matrix construction order = np.argsort(feature_ints) feature_ints = feature_ints[order] mc.append_column('feature_idx', feature_ints) del feature_ints li_ints = np.fromiter( (k[1] for k in counts.iterkeys()), dtype=MoleculeCounter.get_column_dtype('library_idx'), count=len(counts))[order] mc.append_column('library_idx', li_ints) del li_ints umi_ints = np.fromiter((k[0] for k in counts.iterkeys()), dtype=MoleculeCounter.get_column_dtype('umi'), count=len(counts))[order] mc.append_column('umi', umi_ints) del umi_ints count_ints = np.fromiter( counts.itervalues(), dtype=MoleculeCounter.get_column_dtype('count'), count=len(counts))[order] mc.append_column('count', count_ints) del count_ints in_bam.close() mc.set_metric(cr_mol_counter.LIBRARIES_METRIC, dict(lib_metrics)) mc.save()
def main(args, outs): in_bam = tk_bam.create_bam_infile(args.reads) out_vcf = tk_io.VariantFileWriter(open(outs.filtered_variants, 'w'), template_file=open(args.chunk_variants)) snps = load_snps(args.snps) bcs = cr_utils.load_barcode_tsv(args.cell_barcodes) raw_matrix_types = snp_constants.SNP_BASE_TYPES raw_matrix_snps = [snps for _ in snp_constants.SNP_BASE_TYPES] raw_allele_bc_matrices = cr_matrix.GeneBCMatrices(raw_matrix_types, raw_matrix_snps, bcs) likelihood_matrix_types = snp_constants.ALLELES likelihood_matrix_snps = [snps for _ in snp_constants.ALLELES] likelihood_allele_bc_matrices = cr_matrix.GeneBCMatrices( likelihood_matrix_types, likelihood_matrix_snps, bcs, dtype=np.float64) # Configurable SNP filter parameters min_snp_call_qual = args.min_snp_call_qual if args.min_snp_call_qual is not None else snp_constants.DEFAULT_MIN_SNP_CALL_QUAL min_bcs_per_snp = args.min_bcs_per_snp if args.min_bcs_per_snp is not None else snp_constants.DEFAULT_MIN_BCS_PER_SNP min_snp_obs = args.min_snp_obs if args.min_snp_obs is not None else snp_constants.DEFAULT_MIN_SNP_OBS base_error_rate = args.base_error_rate if args.base_error_rate is not None else snp_constants.DEFAULT_BASE_ERROR_RATE min_snp_base_qual = args.min_snp_base_qual if args.min_snp_base_qual is not None else snp_constants.DEFAULT_MIN_SNP_BASE_QUAL for record in vcf_record_iter(args.chunk_variants, min_snp_call_qual): ref_base = str(record.REF) alt_base = str(record.ALT[0]) pos = record.POS - 1 snps = collections.defaultdict(lambda: np.zeros((2, 2))) for col in in_bam.pileup(record.CHROM, pos, pos + 1): if col.pos != pos: continue for read in col.pileups: bc = cr_utils.get_read_barcode(read.alignment) umi = cr_utils.get_read_umi(read.alignment) assert bc in set(bcs) and umi is not None # Overlaps an exon junction qpos = get_read_qpos(read) if qpos is None: continue base = str(read.alignment.query[qpos - read.alignment.qstart]) base_qual = ord(read.alignment.qual[ qpos - read.alignment.qstart]) - tk_constants.ILLUMINA_QUAL_OFFSET if base == ref_base: base_index = 0 elif base == alt_base: base_index = 1 else: continue dupe_key = (bc, umi) snps[dupe_key][base_index, 0] += 1 snps[dupe_key][base_index, 1] = max(base_qual, snps[dupe_key][base_index, 1]) bcs_bases = collections.defaultdict(collections.Counter) for (bc, umi), bases in snps.iteritems(): base_index = np.argmax(bases[:, 0]) base = ref_base if base_index == 0 else alt_base base_qual = bases[base_index, 1] if base_qual < min_snp_base_qual: continue bcs_bases[bc][base] += 1 # Filter if not enough unique barcodes if len(bcs_bases) < min_bcs_per_snp: continue # Filter if not enough observed bases snp_obs = 0 for b in bcs_bases.itervalues(): snp_obs += sum([count for count in b.itervalues()]) if snp_obs < min_snp_obs: continue for bc, bases in bcs_bases.iteritems(): ref_obs = bases[ref_base] alt_obs = bases[alt_base] total_obs = ref_obs + alt_obs obs = np.array([ ref_obs, alt_obs, ]) log_p_hom_ref = sp_stats.binom.logpmf(ref_obs, total_obs, 1 - base_error_rate) log_p_hom_alt = sp_stats.binom.logpmf(alt_obs, total_obs, 1 - base_error_rate) log_p_het = sp_stats.binom.logpmf(ref_obs, total_obs, 0.5) log_p = np.array([ log_p_hom_ref, log_p_het, log_p_hom_alt, ]) log_p -= sp_misc.logsumexp(log_p) matrix = raw_allele_bc_matrices.matrices.values()[0] snp_index = matrix.gene_id_to_int(format_record(record)) bc_index = matrix.bc_to_int(bc) for i, base_type in enumerate(snp_constants.SNP_BASE_TYPES): raw_allele_bc_matrices.get_matrix(base_type).m[ snp_index, bc_index] = obs[i] for i, allele in enumerate(snp_constants.ALLELES): likelihood_allele_bc_matrices.get_matrix(allele).m[ snp_index, bc_index] = log_p[i] out_vcf.write_record(record) raw_allele_bc_matrices.save_h5(outs.raw_allele_bc_matrices_h5) likelihood_allele_bc_matrices.save_h5( outs.likelihood_allele_bc_matrices_h5)
def main(args, outs): outs.coerce_strings() in_bam = tk_bam.create_bam_infile(args.chunk_input) counter = cr_mol_counter.MoleculeCounter.open(outs.output, mode='w') mol_data_keys = cr_mol_counter.MoleculeCounter.get_data_columns() mol_data_columns = {key: idx for idx, key in enumerate(mol_data_keys)} gene_index = cr_reference.GeneIndex.load_pickle( cr_utils.get_reference_genes_index(args.reference_path)) genomes = cr_utils.get_reference_genomes(args.reference_path) genome_index = cr_reference.get_genome_index(genomes) none_gene_id = len(gene_index.get_genes()) # store reference index columns # NOTE - these must be cast to str first, as unicode is not supported counter.set_ref_column('genome_ids', [str(genome) for genome in genomes]) counter.set_ref_column('gene_ids', [str(gene.id) for gene in gene_index.genes]) counter.set_ref_column('gene_names', [str(gene.name) for gene in gene_index.genes]) filtered_bcs_per_genome = cr_utils.load_barcode_csv(args.filtered_barcodes) filtered_bcs = set() for _, bcs in filtered_bcs_per_genome.iteritems(): filtered_bcs |= set(bcs) gg_metrics = collections.defaultdict( lambda: {cr_mol_counter.GG_CONF_MAPPED_FILTERED_BC_READS_METRIC: 0}) for (gem_group, barcode, gene_ids), reads_iter in itertools.groupby( in_bam, key=cr_utils.barcode_sort_key): if barcode is None or gem_group is None: continue is_cell_barcode = cr_utils.format_barcode_seq( barcode, gem_group) in filtered_bcs molecules = collections.defaultdict( lambda: np.zeros(len(mol_data_columns), dtype=np.uint64)) compressed_barcode = cr_mol_counter.MoleculeCounter.compress_barcode_seq( barcode) gem_group = cr_mol_counter.MoleculeCounter.compress_gem_group( gem_group) read_positions = collections.defaultdict(set) for read in reads_iter: umi = cr_utils.get_read_umi(read) # ignore read2 to avoid double-counting. the mapping + annotation should be equivalent. if read.is_secondary or umi is None or read.is_read2: continue raw_umi = cr_utils.get_read_raw_umi(read) raw_bc, raw_gg = cr_utils.split_barcode_seq( cr_utils.get_read_raw_barcode(read)) proc_bc, proc_gg = cr_utils.split_barcode_seq( cr_utils.get_read_barcode(read)) if cr_utils.is_read_conf_mapped_to_transcriptome( read, cr_utils.get_high_conf_mapq(args.align)): assert len(gene_ids) == 1 mol_key, map_type = (umi, gene_index.gene_id_to_int( gene_ids[0])), 'reads' read_pos = (read.tid, read.pos) uniq_read_pos = read_pos not in read_positions[mol_key] read_positions[mol_key].add(read_pos) if is_cell_barcode: gg_metrics[int(gem_group)][ cr_mol_counter. GG_CONF_MAPPED_FILTERED_BC_READS_METRIC] += 1 elif read.is_unmapped: mol_key, map_type, uniq_read_pos = ( umi, none_gene_id), 'unmapped_reads', False else: mol_key, map_type, uniq_read_pos = ( umi, none_gene_id), 'nonconf_mapped_reads', False molecules[mol_key][mol_data_columns[map_type]] += 1 molecules[mol_key][mol_data_columns['umi_corrected_reads']] += int( not raw_umi == umi) molecules[mol_key][mol_data_columns[ 'barcode_corrected_reads']] += int(not raw_bc == proc_bc) molecules[mol_key][mol_data_columns[ 'conf_mapped_uniq_read_pos']] += int(uniq_read_pos) for mol_key, molecule in sorted(molecules.items()): umi, gene_id = mol_key genome = cr_utils.get_genome_from_str( gene_index.int_to_gene_id(gene_id), genomes) genome_id = cr_reference.get_genome_id(genome, genome_index) counter.add( barcode=compressed_barcode, gem_group=gem_group, umi=cr_mol_counter.MoleculeCounter.compress_umi_seq(umi), gene=gene_id, genome=genome_id, **{ key: molecule[col_idx] for key, col_idx in mol_data_columns.iteritems() }) in_bam.close() counter.set_metric(cr_mol_counter.GEM_GROUPS_METRIC, dict(gg_metrics)) counter.save()