axes[4].set_yticks(-np.arange(16) * 100) if show_xlabels: axes[4].set_xlabel(r'$\sigma^2$ (mV$^2$)', va='center') axes[4].set_title('LFP variance', va='baseline') axes[4].legend(bbox_to_anchor=(1.37, 1.0), frameon=False) axes[4].set_xlim(left=1E-7) phlp.remove_axis_junk(axes[4]) phlp.annotate_subplot(axes[4], ncols=1, nrows=1, letter='E') return fig if __name__ == '__main__': plt.close('all') params = multicompartment_params() ana_params = analysis_params.params() ana_params.set_PLOS_2column_fig_style(ratio=1) fig, axes = plt.subplots(2, 5) fig.subplots_adjust(left=0.06, right=0.96, wspace=0.4, hspace=0.2, bottom=0.05, top=0.95) # params.figures_path = os.path.join(params.savefolder, 'figures') # params.populations_path = os.path.join(params.savefolder, 'populations') # params.spike_output_path = os.path.join(params.savefolder, # 'processed_nest_output')
#set some seed values SEED = 12345678 SIMULATIONSEED = 12345678 np.random.seed(SEED) ################################################################################ ## PARAMETERS ################################################################################ from cellsim16popsParams_modified_spontan import multicompartment_params, \ point_neuron_network_params #Full set of parameters including network parameters params = multicompartment_params() #set up the file destination setup_file_dest(params, clearDestination=True) ############################################################################### # MAIN simulation procedure ############################################################################### #tic toc tic = time() ######## Perform network simulation ############################################ ##initiate nest simulation with only the point neuron network parameter class