loss_alpha = 1 # amplitude loss_beta = 1 # phase # threshold is useless when normalization is None loss_type = {'threshold': 'origin', 'normalization': None} loss_threshold = 1 # training mark = 'rcf-gan' if adversarial_training_param['adv_t_sigma_num'] > 0: model_label = target_source + '_t_net_' + generator_training_param['net_type'] + '_' + mark else: model_label = target_source + '_t_normal_' + generator_training_param['net_type'] + '_' + mark model = Model(model_label, target_source, target_dim, target_size, target_batch_size, adversarial_training_param, generator_training_param, loss_type, loss_alpha, loss_beta, loss_threshold, ae_loss_reg, epoch) if load >= 0: model.train(load) # parameters for testing num_white_noise_test = 100 # testing model.test(num_white_noise_test) model.test_rec() model.save_for_scores() # model.save_for_scores_per_epoc() model.interpolated_imgs(8)
'activations_a': [('lrelu', 0.2), ('tanh', None)], 'weight_decay': 0, 'lr_step_size_decay': 0, 'lr_decay_gamma': 0.5, # activations for the t_net, only valid when t_net = True 'activations_t': [('lrelu', 0.2), ('tanh', None)] } if adversarial_training_param['adv_t_sigma_num'] > 0: model_label = target_source + '_t_net_' + generator_training_param[ 'net_type'] + '_' + args.mark else: model_label = target_source + '_t_normal_' + generator_training_param[ 'net_type'] + '_' + args.mark # training model = Model(model_label, target_source, target_dim, target_size, target_batch_size, adversarial_training_param, generator_training_param, loss_type, loss_alpha, loss_beta, loss_threshold, ae_loss_reg, args.epochs) if args.resume_training >= 0: model.train(args.resume_training, args.save_period) # testing model.test() model.test_rec() model.save_for_scores() # model.save_for_scores_per_epoc() model.interpolated_imgs(8)