示例#1
0
    def generate(self):
        """Generate (i.e. yield) the source code of the
        module line-by-line.
        """

        from cgen import Block, Module, Include, Line, Define, \
                PrivateNamespace

        body = []

        if self.max_arity is not None:
            body.append(Define("BOOST_PYTHON_MAX_ARITY", self.max_arity))

        if self.use_private_namespace:
            mod_body = [PrivateNamespace(self.mod_body)]
        else:
            mod_body = self.mod_body

        body += ([Include("boost/python.hpp")]
                + self.preamble + [Line()]
                + mod_body
                + [Line(), Line(f"BOOST_PYTHON_MODULE({self.name})")]
                + [Block(self.init_body)])

        return Module(body)
    def get_kernel(self, with_scaling, for_benchmark=False):
        from cgen import \
                Pointer, POD, Value, ArrayOf, \
                Module, FunctionDeclaration, FunctionBody, Block, \
                Line, Define, Include, \
                Initializer, If, For, Statement, Assign, \
                ArrayInitializer

        from cgen import dtype_to_ctype
        from cgen.cuda import CudaShared, CudaConstant, CudaGlobal

        discr = self.discr
        d = discr.dimensions
        dims = range(d)
        given = self.plan.given

        float_type = given.float_type

        f_decl = CudaGlobal(FunctionDeclaration(Value("void", "apply_el_local_mat_smem_mat"),
            [
                Pointer(POD(float_type, "out_vector")),
                Pointer(POD(numpy.uint8, "gmem_matrix")),
                Pointer(POD(float_type, "debugbuf")),
                POD(numpy.uint32, "microblock_count"),
                ]
            ))

        cmod = Module([
                Include("pycuda-helpers.hpp"),
                Line(),
                Value("texture<fp_tex_%s, 1, cudaReadModeElementType>"
                    % dtype_to_ctype(float_type),
                    "in_vector_tex"),
                ])
        if with_scaling:
            cmod.append(
                Value("texture<fp_tex_%s, 1, cudaReadModeElementType>"
                    % dtype_to_ctype(float_type),
                    "scaling_tex"),
                )

        par = self.plan.parallelism

        cmod.extend([
                Line(),
                Define("DIMENSIONS", discr.dimensions),
                Define("DOFS_PER_EL", given.dofs_per_el()),
                Define("PREIMAGE_DOFS_PER_EL", self.plan.preimage_dofs_per_el),
                Line(),
                Define("SEGMENT_DOF", "threadIdx.x"),
                Define("PAR_MB_NR", "threadIdx.y"),
                Line(),
                Define("MB_SEGMENT", "blockIdx.x"),
                Define("MACROBLOCK_NR", "blockIdx.y"),
                Line(),
                Define("DOFS_PER_SEGMENT", self.plan.segment_size),
                Define("SEGMENTS_PER_MB", self.plan.segments_per_microblock()),
                Define("ALIGNED_DOFS_PER_MB", given.microblock.aligned_floats),
                Define("ALIGNED_PREIMAGE_DOFS_PER_MB",
                    self.plan.aligned_preimage_dofs_per_microblock),
                Define("MB_EL_COUNT", given.microblock.elements),
                Line(),
                Define("PAR_MB_COUNT", par.parallel),
                Define("INLINE_MB_COUNT", par.inline),
                Define("SEQ_MB_COUNT", par.serial),
                Line(),
                Define("THREAD_NUM", "(SEGMENT_DOF+PAR_MB_NR*DOFS_PER_SEGMENT)"),
                Define("COALESCING_THREAD_COUNT", "(PAR_MB_COUNT*DOFS_PER_SEGMENT)"),
                Line(),
                Define("MB_DOF_BASE", "(MB_SEGMENT*DOFS_PER_SEGMENT)"),
                Define("MB_DOF", "(MB_DOF_BASE+SEGMENT_DOF)"),
                Define("GLOBAL_MB_NR_BASE",
                    "(MACROBLOCK_NR*PAR_MB_COUNT*INLINE_MB_COUNT*SEQ_MB_COUNT)"),
                Define("GLOBAL_MB_NR",
                    "(GLOBAL_MB_NR_BASE"
                    "+ (seq_mb_number*PAR_MB_COUNT + PAR_MB_NR)*INLINE_MB_COUNT)"),
                Define("GLOBAL_MB_DOF_BASE", "(GLOBAL_MB_NR*ALIGNED_DOFS_PER_MB)"),
                Define("GLOBAL_MB_PREIMG_DOF_BASE", "(GLOBAL_MB_NR*ALIGNED_PREIMAGE_DOFS_PER_MB)"),
                Line(),
                Define("MATRIX_COLUMNS", self.plan.gpu_matrix_columns()),
                Define("MATRIX_SEGMENT_FLOATS", self.plan.gpu_matrix_block_floats()),
                Define("MATRIX_SEGMENT_BYTES",
                    "(MATRIX_SEGMENT_FLOATS*%d)" % given.float_size()),

                Line(),
                CudaShared(ArrayOf(POD(float_type, "smem_matrix"),
                    "MATRIX_SEGMENT_FLOATS")),
                CudaShared(
                    ArrayOf(
                        ArrayOf(
                            ArrayOf(
                                POD(float_type, "dof_buffer"),
                                "PAR_MB_COUNT"),
                            "INLINE_MB_COUNT"),
                        "DOFS_PER_SEGMENT"),
                    ),
                CudaShared(POD(numpy.uint16, "segment_start_el")),
                CudaShared(POD(numpy.uint16, "segment_stop_el")),
                CudaShared(POD(numpy.uint16, "segment_el_count")),
                Line(),
                ArrayInitializer(
                        CudaConstant(
                            ArrayOf(
                                POD(numpy.uint32, "segment_start_el_lookup"),
                            "SEGMENTS_PER_MB")),
                        [(chk*self.plan.segment_size)//given.dofs_per_el()
                            for chk in range(self.plan.segments_per_microblock())]
                        ),
                ArrayInitializer(
                        CudaConstant(
                            ArrayOf(
                                POD(numpy.uint32, "segment_stop_el_lookup"),
                            "SEGMENTS_PER_MB")),
                        [min(given.microblock.elements,
                            (chk*self.plan.segment_size+self.plan.segment_size-1)
                                //given.dofs_per_el()+1)
                            for chk in range(self.plan.segments_per_microblock())]
                        ),
                ])

        S = Statement
        f_body = Block()

        f_body.extend_log_block("calculate this dof's element", [
            Initializer(POD(numpy.uint8, "mb_el"),
                "MB_DOF/DOFS_PER_EL") ])

        if self.plan.use_prefetch_branch:
            f_body.extend_log_block("calculate segment responsibility data", [
                If("THREAD_NUM==0",
                    Block([
                        Assign("segment_start_el", "segment_start_el_lookup[MB_SEGMENT]"),
                        Assign("segment_stop_el", "segment_stop_el_lookup[MB_SEGMENT]"),
                        Assign("segment_el_count", "segment_stop_el-segment_start_el"),
                        ])
                    ),
                S("__syncthreads()")
                ])

        from hedge.backends.cuda.tools import get_load_code
        f_body.extend(
            get_load_code(
                dest="smem_matrix",
                base=("gmem_matrix + MB_SEGMENT*MATRIX_SEGMENT_BYTES"),
                bytes="MATRIX_SEGMENT_BYTES",
                descr="load matrix segment")
            +[S("__syncthreads()")]
            )

        # ---------------------------------------------------------------------
        def get_batched_fetch_mat_mul_code(el_fetch_count):
            result = []
            dofs = range(self.plan.preimage_dofs_per_el)

            for load_segment_start in range(0, self.plan.preimage_dofs_per_el,
                    self.plan.segment_size):
                result.extend(
                        [S("__syncthreads()")]
                        +[Assign(
                            "dof_buffer[PAR_MB_NR][%d][SEGMENT_DOF]" % inl,
                            "fp_tex1Dfetch(in_vector_tex, "
                            "GLOBAL_MB_PREIMG_DOF_BASE"
                            " + %d*ALIGNED_PREIMAGE_DOFS_PER_MB"
                            " + (segment_start_el)*PREIMAGE_DOFS_PER_EL + %d + SEGMENT_DOF)"
                            % (inl, load_segment_start)
                            )
                        for inl in range(par.inline)]
                        +[S("__syncthreads()"),
                        Line(),
                        ])

                for dof in dofs[load_segment_start:load_segment_start+self.plan.segment_size]:
                    for inl in range(par.inline):
                        result.append(
                                S("result%d += "
                                    "smem_matrix[SEGMENT_DOF*MATRIX_COLUMNS + %d]"
                                    "*"
                                    "dof_buffer[PAR_MB_NR][%d][%d]"
                                    % (inl, dof, inl, dof-load_segment_start))
                                )
                result.append(Line())
            return result

        from hedge.backends.cuda.tools import unroll
        def get_direct_tex_mat_mul_code():
            return (
                    [POD(float_type, "fof%d" % inl) for inl in range(par.inline)]
                    + [POD(float_type, "lm"), Line()]
                    + unroll(
                        lambda j: [
                        Assign("fof%d" % inl,
                            "fp_tex1Dfetch(in_vector_tex, "
                            "GLOBAL_MB_PREIMG_DOF_BASE"
                            " + %(inl)d * ALIGNED_PREIMAGE_DOFS_PER_MB"
                            " + mb_el*PREIMAGE_DOFS_PER_EL+%(j)s)"
                            % {"j":j, "inl":inl, "row": "SEGMENT_DOF"},)
                        for inl in range(par.inline)
                        ]+[
                        Assign("lm",
                            "smem_matrix["
                            "%(row)s*MATRIX_COLUMNS + %(j)s]"
                            % {"j":j, "row": "SEGMENT_DOF"},
                            )
                        ]+[
                        S("result%(inl)d += fof%(inl)d*lm" % {"inl":inl})
                        for inl in range(par.inline)
                        ],
                        total_number=self.plan.preimage_dofs_per_el,
                        max_unroll=self.plan.max_unroll)
                    + [Line()])

        def get_mat_mul_code(el_fetch_count):
            if el_fetch_count == 1:
                return get_batched_fetch_mat_mul_code(el_fetch_count)
            else:
                return get_direct_tex_mat_mul_code()

        def mat_mul_outer_loop(fetch_count):
            if with_scaling:
                inv_jac_multiplier = ("fp_tex1Dfetch(scaling_tex,"
                        "(GLOBAL_MB_NR + %(inl)d)*MB_EL_COUNT + mb_el)")
            else:
                inv_jac_multiplier = "1"

            write_condition = "MB_DOF < DOFS_PER_EL*MB_EL_COUNT"
            if self.with_index_check:
                write_condition += " && GLOBAL_MB_NR < microblock_count"
            return For("unsigned short seq_mb_number = 0",
                "seq_mb_number < SEQ_MB_COUNT",
                "++seq_mb_number",
                Block([
                    Initializer(POD(float_type, "result%d" % inl), 0)
                    for inl in range(par.inline)
                    ]+[Line()]
                    +get_mat_mul_code(fetch_count)
                    +[
                    If(write_condition,
                        Block([
                            Assign(
                                "out_vector[GLOBAL_MB_DOF_BASE"
                                " + %d*ALIGNED_DOFS_PER_MB"
                                " + MB_DOF]" % inl,
                                "result%d * %s" % (inl, (inv_jac_multiplier % {"inl":inl}))
                                )
                            for inl in range(par.inline)
                            ])
                        )
                    ])
                )

        if self.plan.use_prefetch_branch:
            from cgen import make_multiple_ifs
            f_body.append(make_multiple_ifs([
                    ("segment_el_count == %d" % fetch_count,
                        mat_mul_outer_loop(fetch_count))
                    for fetch_count in
                    range(1, self.plan.max_elements_touched_by_segment()+1)]
                    ))
        else:
            f_body.append(mat_mul_outer_loop(0))

        # finish off ----------------------------------------------------------
        cmod.append(FunctionBody(f_decl, f_body))

        if not for_benchmark and "cuda_dump_kernels" in discr.debug:
            from hedge.tools import open_unique_debug_file
            open_unique_debug_file(self.plan.debug_name, ".cu").write(str(cmod))

        mod = SourceModule(cmod,
                keep="cuda_keep_kernels" in discr.debug,
                #options=["--maxrregcount=12"]
                )

        func = mod.get_function("apply_el_local_mat_smem_mat")

        if self.plan.debug_name in discr.debug:
            print "%s: lmem=%d smem=%d regs=%d" % (
                    self.plan.debug_name,
                    func.local_size_bytes,
                    func.shared_size_bytes,
                    func.num_regs)

        in_vector_texref = mod.get_texref("in_vector_tex")
        texrefs = [in_vector_texref]

        if with_scaling:
            scaling_texref = mod.get_texref("scaling_tex")
            texrefs.append(scaling_texref)
        else:
            scaling_texref = None

        func.prepare(
                "PPPI",
                block=(self.plan.segment_size, self.plan.parallelism.parallel, 1),
                texrefs=texrefs)

        return func, in_vector_texref, scaling_texref
c_gpu = cuda.mem_alloc(a.nbytes)

from cgen import FunctionBody, \
        FunctionDeclaration, POD, Value, \
        Pointer, Module, Block, Initializer, Assign
from cgen.cuda import CudaGlobal

mod = Module([
    FunctionBody(
        CudaGlobal(FunctionDeclaration(
            Value("void", "add"),
            arg_decls=[Pointer(POD(dtype, name)) 
                for name in ["tgt", "op1", "op2"]])),
        Block([
            Initializer(
                POD(numpy.int32, "idx"),
                "threadIdx.x + %d*blockIdx.x" 
                % (block_size*thread_strides)),
            ]+[
            Assign(
                "tgt[idx+%d]" % (o*block_size),
                "op1[idx+%d] + op2[idx+%d]" % (
                    o*block_size, 
                    o*block_size))
            for o in range(thread_strides)]))])

mod = SourceModule(mod)

func = mod.get_function("add")
func(c_gpu, a_gpu, b_gpu, 
        block=(block_size,1,1),
        grid=(macroblock_count,1))
示例#4
0
    def make_cuda_kernel(self, discr, dtype, eg):
        given = discr.given
        ldis = eg.local_discretization

        microblocks_per_block = 1

        from cgen.cuda import CudaGlobal

        from cgen import (Module, Value, Include,
                Typedef, FunctionBody, FunctionDeclaration, Const,
                Line, POD, LiteralBlock,
                Define, Pointer)

        cmod = Module([
            Include("pycuda-helpers.hpp"),
            Line(),
            Typedef(POD(dtype, "value_type")),
            Line(),
            Define("DOFS_PER_EL", given.dofs_per_el()),
            Define("ALIGNED_DOFS_PER_MB", given.microblock.aligned_floats),
            Define("VERTICES_PER_EL", ldis.vertex_count()),
            Define("ELS_PER_MB", given.microblock.elements),
            Define("MBS_PER_BLOCK", microblocks_per_block),
            Line(),
            Define("DOF_IN_MB_IDX", "threadIdx.x"),
            Define("DOF_IN_EL_IDX", "(DOF_IN_MB_IDX-el_idx_in_mb*DOFS_PER_EL)"),
            Define("MB_IN_BLOCK_IDX", "threadIdx.y"),
            Define("BLOCK_IDX", "blockIdx.x"),
            Define("MB_NUMBER", "(BLOCK_IDX * MBS_PER_BLOCK + MB_IN_BLOCK_IDX)"),
            Define("BLOCK_DATA", "whole_block[MB_IN_BLOCK_IDX]")]
            + self.get_cuda_extra_preamble(discr, dtype, eg)
            + [FunctionBody(
            CudaGlobal(FunctionDeclaration(
                    Value("void", "elwise_kernel"), [
                    Pointer(Const(POD(dtype, "field"))),
                    Pointer(POD(dtype, "result")),
                    POD(numpy.uint32, "mb_count"),
                    ])),
                LiteralBlock("""
                int el_idx_in_mb = DOF_IN_MB_IDX / DOFS_PER_EL;

                if (MB_NUMBER >= mb_count)
                  return;

                int idx =  MB_NUMBER * ALIGNED_DOFS_PER_MB + DOF_IN_MB_IDX;
                int element_base_idx = ALIGNED_DOFS_PER_MB * MB_IN_BLOCK_IDX +
                    (DOF_IN_MB_IDX / DOFS_PER_EL) * DOFS_PER_EL;
                int dof_in_element = DOF_IN_MB_IDX-el_idx_in_mb*DOFS_PER_EL;

                __shared__ value_type whole_block[MBS_PER_BLOCK][ALIGNED_DOFS_PER_MB+1];
                int idx_in_block = ALIGNED_DOFS_PER_MB * MB_IN_BLOCK_IDX + DOF_IN_MB_IDX;
                BLOCK_DATA[idx_in_block] = field[idx];

                __syncthreads();

                %s

                result[idx] = node_result;
                """ % self.get_cuda_code(discr, dtype, eg)))
                ])


        if False:
            for i, l in enumerate(str(cmod).split("\n")):
                print i+1, l
            raw_input()

        from pycuda.compiler import SourceModule
        mod = SourceModule(
                cmod,
                keep="cuda_keep_kernels" in discr.debug,
                )
        func = mod.get_function("elwise_kernel")
        func.prepare(
            "PPI", block=(
                given.microblock.aligned_floats,
                microblocks_per_block, 1))

        mb_count = len(discr.blocks) * discr.given.microblocks_per_block
        grid_dim = (mb_count + microblocks_per_block - 1) \
                // microblocks_per_block

        from pytools import Record
        class KernelInfo(Record):
            pass

        return KernelInfo(
                func=func,
                grid_dim=grid_dim,
                mb_count=mb_count)
示例#5
0
from cgen import FunctionBody, \
        FunctionDeclaration, Typedef, POD, Value, \
        Pointer, Module, Block, Initializer, Assign
from cgen.cuda import CudaGlobal

mod = Module([
    FunctionBody(
        CudaGlobal(
            FunctionDeclaration(Value("void", "add"),
                                arg_decls=[
                                    Pointer(POD(dtype, name))
                                    for name in ["tgt", "op1", "op2"]
                                ])),
        Block([
            Initializer(
                POD(numpy.int32, "idx"), "threadIdx.x + %d*blockIdx.x" %
                (block_size * thread_strides)),
        ] + [
            Assign(
                "tgt[idx+%d]" % (o * block_size), "op1[idx+%d] + op2[idx+%d]" %
                (o * block_size, o * block_size))
            for o in range(thread_strides)
        ]))
])

mod = SourceModule(mod)

func = mod.get_function("add")
func(c_gpu, a_gpu, b_gpu, block=(block_size, 1, 1), grid=(macroblock_count, 1))
示例#6
0
    def get_kernel(self, diff_op, elgroup, for_benchmark=False):
        from cgen import (
            Pointer,
            POD,
            Value,
            ArrayOf,
            Const,
            Module,
            FunctionDeclaration,
            FunctionBody,
            Block,
            Comment,
            Line,
            Define,
            Include,
            Initializer,
            If,
            For,
            Statement,
            Assign,
        )

        from pycuda.tools import dtype_to_ctype
        from cgen.cuda import CudaShared, CudaGlobal

        discr = self.discr
        d = discr.dimensions
        dims = range(d)
        plan = self.plan
        given = plan.given

        elgroup, = discr.element_groups
        float_type = given.float_type

        f_decl = CudaGlobal(
            FunctionDeclaration(
                Value("void", "apply_diff_mat_smem"),
                [Pointer(POD(float_type, "debugbuf")), Pointer(POD(float_type, "field"))]
                + [Pointer(POD(float_type, "drst%d_global" % i)) for i in dims],
            )
        )

        par = plan.parallelism

        cmod = Module([Include("pycuda-helpers.hpp")])

        if float_type == numpy.float64:
            cmod.append(Value("texture<fp_tex_double, 1, cudaReadModeElementType>", "diff_rst_mat_tex"))
        elif float_type == numpy.float32:
            rst_channels = given.devdata.make_valid_tex_channel_count(d)
            cmod.append(Value("texture<float%d, 1, cudaReadModeElementType>" % rst_channels, "diff_rst_mat_tex"))
        else:
            raise ValueError("unsupported float type: %s" % float_type)

        # only preimage size variation is supported here
        assert plan.image_dofs_per_el == given.dofs_per_el()
        assert plan.aligned_image_dofs_per_microblock == given.microblock.aligned_floats

        # FIXME: aligned_image_dofs_per_microblock must be divisible
        # by this, therefore hardcoding for now.
        chunk_size = 16

        cmod.extend(
            [
                Line(),
                Define("DIMENSIONS", discr.dimensions),
                Define("IMAGE_DOFS_PER_EL", plan.image_dofs_per_el),
                Define("PREIMAGE_DOFS_PER_EL", plan.preimage_dofs_per_el),
                Define("ALIGNED_IMAGE_DOFS_PER_MB", plan.aligned_image_dofs_per_microblock),
                Define("ALIGNED_PREIMAGE_DOFS_PER_MB", plan.aligned_preimage_dofs_per_microblock),
                Define("ELS_PER_MB", given.microblock.elements),
                Define("IMAGE_DOFS_PER_MB", "(IMAGE_DOFS_PER_EL*ELS_PER_MB)"),
                Line(),
                Define("CHUNK_SIZE", chunk_size),
                Define("CHUNK_DOF", "threadIdx.x"),
                Define("PAR_MB_NR", "threadIdx.y"),
                Define("CHUNK_NR", "threadIdx.z"),
                Define("IMAGE_MB_DOF", "(CHUNK_NR*CHUNK_SIZE+CHUNK_DOF)"),
                Define("IMAGE_EL_DOF", "(IMAGE_MB_DOF - mb_el*IMAGE_DOFS_PER_EL)"),
                Line(),
                Define("MACROBLOCK_NR", "blockIdx.x"),
                Line(),
                Define("PAR_MB_COUNT", par.parallel),
                Define("INLINE_MB_COUNT", par.inline),
                Define("SEQ_MB_COUNT", par.serial),
                Line(),
                Define("GLOBAL_MB_NR_BASE", "(MACROBLOCK_NR*PAR_MB_COUNT*INLINE_MB_COUNT*SEQ_MB_COUNT)"),
                Define(
                    "GLOBAL_MB_NR", "(GLOBAL_MB_NR_BASE" "+ (seq_mb_number*PAR_MB_COUNT + PAR_MB_NR)*INLINE_MB_COUNT)"
                ),
                Define("GLOBAL_MB_IMAGE_DOF_BASE", "(GLOBAL_MB_NR*ALIGNED_IMAGE_DOFS_PER_MB)"),
                Define("GLOBAL_MB_PREIMAGE_DOF_BASE", "(GLOBAL_MB_NR*ALIGNED_PREIMAGE_DOFS_PER_MB)"),
                Line(),
                CudaShared(
                    ArrayOf(
                        ArrayOf(ArrayOf(POD(float_type, "smem_field"), "PAR_MB_COUNT"), "INLINE_MB_COUNT"),
                        "ALIGNED_PREIMAGE_DOFS_PER_MB",
                    )
                ),
                Line(),
            ]
        )

        S = Statement
        f_body = Block([Initializer(Const(POD(numpy.uint16, "mb_el")), "IMAGE_MB_DOF / IMAGE_DOFS_PER_EL"), Line()])

        # ---------------------------------------------------------------------
        def get_load_code():
            mb_img_dofs = plan.aligned_image_dofs_per_microblock
            mb_preimg_dofs = plan.aligned_preimage_dofs_per_microblock
            preimg_dofs_over_dofs = (mb_preimg_dofs + mb_img_dofs - 1) // mb_img_dofs

            load_code = []
            store_code = []

            var_num = 0
            for load_block in range(preimg_dofs_over_dofs):
                for inl in range(par.inline):
                    # load and store are split for better pipelining
                    # compiler can't figure that out because of branch

                    var = "tmp%d" % var_num
                    var_num += 1
                    load_code.append(POD(float_type, var))

                    block_addr = "%d * ALIGNED_IMAGE_DOFS_PER_MB + IMAGE_MB_DOF" % load_block
                    load_instr = Assign(
                        var,
                        "field[GLOBAL_MB_PREIMAGE_DOF_BASE"
                        " + %d*ALIGNED_PREIMAGE_DOFS_PER_MB"
                        " + %s]" % (inl, block_addr),
                    )
                    store_instr = Assign("smem_field[PAR_MB_NR][%d][%s]" % (inl, block_addr), var)
                    if (load_block + 1) * mb_img_dofs >= mb_preimg_dofs:
                        cond = "%s < ALIGNED_PREIMAGE_DOFS_PER_MB" % block_addr
                        load_instr = If(cond, load_instr)
                        store_instr = If(cond, store_instr)

                    load_code.append(load_instr)
                    store_code.append(store_instr)
            return Block(load_code + [Line()] + store_code)

        def get_scalar_diff_code():
            code = []
            for inl in range(par.inline):
                for axis in dims:
                    code.append(Initializer(POD(float_type, "d%drst%d" % (inl, axis)), 0))

            code.append(Line())

            tex_channels = ["x", "y", "z", "w"]

            store_code = Block()
            for inl in range(par.inline):
                for rst_axis in dims:
                    store_code.append(
                        Assign(
                            "drst%d_global[GLOBAL_MB_IMAGE_DOF_BASE + "
                            "%d*ALIGNED_IMAGE_DOFS_PER_MB + IMAGE_MB_DOF]" % (rst_axis, inl),
                            "d%drst%d" % (inl, rst_axis),
                        )
                    )

            from hedge.backends.cuda.tools import unroll

            code.extend(
                [
                    Comment("everybody needs to be done with the old data"),
                    S("__syncthreads()"),
                    Line(),
                    get_load_code(),
                    Line(),
                    Comment("all the new data must be loaded"),
                    S("__syncthreads()"),
                    Line(),
                ]
            )

            if float_type == numpy.float32:
                code.append(Value("float%d" % rst_channels, "dmat_entries"))

            code.extend([POD(float_type, "field_value%d" % inl) for inl in range(par.inline)] + [Line()])

            def unroll_body(j):
                result = [
                    Assign("field_value%d" % inl, "smem_field[PAR_MB_NR][%d][mb_el*PREIMAGE_DOFS_PER_EL+%s]" % (inl, j))
                    for inl in range(par.inline)
                ]

                if float_type == numpy.float32:
                    result.append(
                        Assign("dmat_entries", "tex1Dfetch(diff_rst_mat_tex, IMAGE_EL_DOF + %s*IMAGE_DOFS_PER_EL)" % j)
                    )
                    result.extend(
                        S("d%drst%d += dmat_entries.%s * field_value%d" % (inl, axis, tex_channels[axis], inl))
                        for inl in range(par.inline)
                        for axis in dims
                    )
                elif float_type == numpy.float64:
                    result.extend(
                        S(
                            "d%(inl)drst%(axis)d += "
                            "fp_tex1Dfetch(diff_rst_mat_tex, %(axis)d "
                            "+ DIMENSIONS*(IMAGE_EL_DOF + %(j)d*IMAGE_DOFS_PER_EL))"
                            "* field_value%(inl)d" % {"inl": inl, "axis": axis, "j": j}
                        )
                        for inl in range(par.inline)
                        for axis in dims
                    )
                else:
                    assert False

                return result

            code.append(
                If(
                    "IMAGE_MB_DOF < IMAGE_DOFS_PER_MB",
                    Block(unroll(unroll_body, total_number=plan.preimage_dofs_per_el) + [store_code]),
                )
            )

            return code

        f_body.extend(
            [
                For(
                    "unsigned short seq_mb_number = 0",
                    "seq_mb_number < SEQ_MB_COUNT",
                    "++seq_mb_number",
                    Block(get_scalar_diff_code()),
                )
            ]
        )

        # finish off ----------------------------------------------------------
        cmod.append(FunctionBody(f_decl, f_body))

        if not for_benchmark and "cuda_dump_kernels" in discr.debug:
            from hedge.tools import open_unique_debug_file

            open_unique_debug_file("diff", ".cu").write(str(cmod))

        mod = SourceModule(
            cmod,
            keep="cuda_keep_kernels" in discr.debug,
            # options=["--maxrregcount=16"]
        )

        func = mod.get_function("apply_diff_mat_smem")

        if "cuda_diff" in discr.debug:
            print "diff: lmem=%d smem=%d regs=%d" % (func.local_size_bytes, func.shared_size_bytes, func.registers)

        diff_rst_mat_texref = mod.get_texref("diff_rst_mat_tex")
        gpu_diffmats = self.gpu_diffmats(diff_op, elgroup)

        if given.float_type == numpy.float32:
            gpu_diffmats.bind_to_texref_ext(diff_rst_mat_texref, rst_channels)
        elif given.float_type == numpy.float64:
            gpu_diffmats.bind_to_texref_ext(diff_rst_mat_texref, allow_double_hack=True)
        else:
            assert False

        assert given.microblock.aligned_floats % chunk_size == 0
        block = (chunk_size, plan.parallelism.parallel, given.microblock.aligned_floats // chunk_size)

        func.prepare(["PP"] + discr.dimensions * ["P"], texrefs=[diff_rst_mat_texref])

        return block, func
示例#7
0
    def get_kernel(self, for_benchmark=False):
        from cgen import \
                Pointer, POD, Value, ArrayOf, Const, \
                Module, FunctionDeclaration, FunctionBody, Block, \
                Comment, Line, Include, \
                Define, \
                Initializer, If, For, Statement, Assign

        from cgen import dtype_to_ctype
        from cgen.cuda import CudaShared, CudaGlobal

        discr = self.discr
        d = discr.dimensions
        dims = range(d)
        given = self.plan.given

        float_type = given.float_type

        f_decl = CudaGlobal(FunctionDeclaration(Value("void", "apply_el_local_mat_smem_field"),
            [
                Pointer(POD(float_type, "out_vector")),
                Pointer(POD(float_type, "in_vector")),
                Pointer(POD(float_type, "debugbuf")),
                POD(numpy.uint32, "microblock_count"),
                ]
            ))

        cmod = Module([
                Include("pycuda-helpers.hpp"),
                Line(),
                Value("texture<fp_tex_%s, 2, cudaReadModeElementType>"
                    % dtype_to_ctype(float_type),
                    "mat_tex"),
                ])

        plan = self.plan
        par = plan.parallelism

        # FIXME: aligned_image_dofs_per_microblock must be divisible
        # by this, therefore hardcoding for now.
        chunk_size = 16

        cmod.extend([
                Line(),
                Define("DIMENSIONS", discr.dimensions),
                Define("IMAGE_DOFS_PER_EL", plan.image_dofs_per_el),
                Define("PREIMAGE_DOFS_PER_EL", plan.preimage_dofs_per_el),
                Define("ALIGNED_IMAGE_DOFS_PER_MB", plan.aligned_image_dofs_per_microblock),
                Define("ALIGNED_PREIMAGE_DOFS_PER_MB",
                    plan.aligned_preimage_dofs_per_microblock),
                Line(),
                Define("MB_EL_COUNT", plan.elements_per_microblock),
                Line(),
                Define("IMAGE_DOFS_PER_MB", "(IMAGE_DOFS_PER_EL*MB_EL_COUNT)"),
                Line(),
                Define("CHUNK_SIZE", chunk_size),
                Define("CHUNK_DOF", "threadIdx.x"),
                Define("PAR_MB_NR", "threadIdx.y"),
                Define("CHUNK_NR", "threadIdx.z"),
                Define("IMAGE_MB_DOF", "(CHUNK_NR*CHUNK_SIZE+CHUNK_DOF)"),
                Define("IMAGE_EL_DOF", "(IMAGE_MB_DOF - mb_el*IMAGE_DOFS_PER_EL)"),
                Line(),
                Define("MACROBLOCK_NR", "blockIdx.x"),
                Line(),
                Define("PAR_MB_COUNT", par.parallel),
                Define("INLINE_MB_COUNT", par.inline),
                Define("SEQ_MB_COUNT", par.serial),
                Line(),
                Define("GLOBAL_MB_NR_BASE",
                    "(MACROBLOCK_NR*PAR_MB_COUNT*INLINE_MB_COUNT*SEQ_MB_COUNT)"),
                Define("GLOBAL_MB_NR",
                    "(GLOBAL_MB_NR_BASE"
                    "+ (seq_mb_number*PAR_MB_COUNT + PAR_MB_NR)*INLINE_MB_COUNT)"),
                Define("GLOBAL_MB_IMAGE_DOF_BASE", "(GLOBAL_MB_NR*ALIGNED_IMAGE_DOFS_PER_MB)"),
                Define("GLOBAL_MB_PREIMAGE_DOF_BASE", "(GLOBAL_MB_NR*ALIGNED_PREIMAGE_DOFS_PER_MB)"),
                Line(),
                CudaShared(
                    ArrayOf(
                        ArrayOf(
                            ArrayOf(
                                POD(float_type, "smem_in_vector"),
                                "PAR_MB_COUNT"),
                            "INLINE_MB_COUNT"),
                        "ALIGNED_PREIMAGE_DOFS_PER_MB")),
                Line(),
                ])

        S = Statement
        f_body = Block([
            Initializer(Const(POD(numpy.uint16, "mb_el")),
                "IMAGE_MB_DOF / IMAGE_DOFS_PER_EL"),
            Line(),
            ])

        def get_load_code():
            mb_img_dofs = plan.aligned_image_dofs_per_microblock
            mb_preimg_dofs = plan.aligned_preimage_dofs_per_microblock
            preimg_dofs_over_dofs = (mb_preimg_dofs+mb_img_dofs-1) // mb_img_dofs

            load_code = []
            store_code = []

            var_num = 0
            for load_block in range(preimg_dofs_over_dofs):
                for inl in range(par.inline):
                    # load and store are split for better pipelining
                    # compiler can't figure that out because of branch

                    var = "tmp%d" % var_num
                    var_num += 1
                    load_code.append(POD(float_type, var))

                    block_addr = "%d * ALIGNED_IMAGE_DOFS_PER_MB + IMAGE_MB_DOF" % load_block
                    load_instr = Assign(var,
                        "in_vector[GLOBAL_MB_PREIMAGE_DOF_BASE"
                        " + %d*ALIGNED_PREIMAGE_DOFS_PER_MB"
                        " + %s]" % (inl, block_addr))
                    store_instr = Assign(
                            "smem_in_vector[PAR_MB_NR][%d][%s]" % (inl, block_addr),
                            var
                            )
                    if (load_block+1)*mb_img_dofs >= mb_preimg_dofs:
                        cond = "%s < ALIGNED_PREIMAGE_DOFS_PER_MB" % block_addr
                        load_instr = If(cond, load_instr)
                        store_instr = If(cond, store_instr)

                    load_code.append(load_instr)
                    store_code.append(store_instr)
            return Block(load_code + [Line()] + store_code)

        def get_matmul_code():
            from hedge.backends.cuda.tools import unroll

            index_check_condition = "GLOBAL_MB_NR < microblock_count"

            def if_(conditions, then):
                final_cond = " && ".join(cond for cond in conditions if cond)
                if final_cond:
                    return If(final_cond, then)
                else:
                    return then

            result = Block([
                Comment("everybody needs to be done with the old data"),
                S("__syncthreads()"), Line(),
                ]+[If(index_check_condition, get_load_code())]+[
                Line(),
                Comment("all the new data must be loaded"),
                S("__syncthreads()"),
                Line(),
                ]+[
                Initializer(POD(float_type, "result%d" % inl), 0)
                for inl in range(par.inline)
                ]+[
                Line(),
                POD(float_type, "mat_entry"),
                Line(),
                ])

            result.append(if_(["IMAGE_MB_DOF < IMAGE_DOFS_PER_MB", index_check_condition],
                Block(unroll(lambda j:
                    [Assign("mat_entry", "fp_tex2D(mat_tex, IMAGE_EL_DOF, %s)" % j)]
                    +[
                    S("result%d += mat_entry "
                    "* smem_in_vector[PAR_MB_NR][%d][mb_el*PREIMAGE_DOFS_PER_EL + %s]"
                    % (inl, inl, j))
                    for inl in range(par.inline)
                    ],
                    total_number=plan.preimage_dofs_per_el)
                    +[Line()]
                    +[Assign(
                        "out_vector[GLOBAL_MB_IMAGE_DOF_BASE + "
                        "%d*ALIGNED_IMAGE_DOFS_PER_MB + IMAGE_MB_DOF]" % inl,
                        "result%d" % inl)
                    for inl in range(par.inline)]
                    )))

            return result

        f_body.append(For("unsigned short seq_mb_number = 0",
            "seq_mb_number < SEQ_MB_COUNT",
            "++seq_mb_number", get_matmul_code()))

        # finish off ----------------------------------------------------------
        cmod.append(FunctionBody(f_decl, f_body))

        if not for_benchmark and "cuda_dump_kernels" in discr.debug:
            from hedge.tools import open_unique_debug_file
            open_unique_debug_file(plan.debug_name, ".cu").write(str(cmod))

        mod = SourceModule(cmod,
                keep="cuda_keep_kernels" in discr.debug,
                #options=["--maxrregcount=12"]
                )

        func = mod.get_function("apply_el_local_mat_smem_field")

        if plan.debug_name in discr.debug:
            print "%s: lmem=%d smem=%d regs=%d" % (
                    plan.debug_name,
                    func.local_size_bytes,
                    func.shared_size_bytes,
                    func.num_regs)

        mat_texref = mod.get_texref("mat_tex")
        texrefs = [mat_texref]

        func.prepare(
                "PPPI",
                texrefs=texrefs)
        assert plan.aligned_image_dofs_per_microblock % chunk_size == 0
        block = (
                chunk_size,
                plan.parallelism.parallel,
                plan.aligned_image_dofs_per_microblock
                //chunk_size)

        return func, block, mat_texref
示例#8
0
    def get_kernel(self, fdata, ilist_data, for_benchmark):
        from cgen.cuda import CudaShared, CudaGlobal
        from pycuda.tools import dtype_to_ctype

        discr = self.discr
        given = self.plan.given
        fplan = self.plan
        d = discr.dimensions
        dims = range(d)

        elgroup, = discr.element_groups

        float_type = given.float_type

        f_decl = CudaGlobal(FunctionDeclaration(Value("void", "apply_flux"),
            [
                Pointer(POD(float_type, "debugbuf")),
                Pointer(POD(numpy.uint8, "gmem_facedata")),
                ]+[
                Pointer(POD(float_type, "gmem_fluxes_on_faces%d" % flux_nr))
                for flux_nr in range(len(self.fluxes))
                ]
            ))

        cmod = Module()
        cmod.append(Include("pycuda-helpers.hpp"))

        for dep_expr in self.all_deps:
            cmod.extend([
                Value("texture<%s, 1, cudaReadModeElementType>"
                    % dtype_to_ctype(float_type, with_fp_tex_hack=True),
                    "field%d_tex" % self.dep_to_index[dep_expr])
                ])

        if fplan.flux_count != len(self.fluxes):
            from warnings import warn
            warn("Flux count in flux execution plan different from actual flux count.\n"
                    "You may want to specify the tune_for= kwarg in the Discretization\n"
                    "constructor.")

        cmod.extend([
            Line(),
            Typedef(POD(float_type, "value_type")),
            Line(),
            flux_header_struct(float_type, discr.dimensions),
            Line(),
            face_pair_struct(float_type, discr.dimensions),
            Line(),
            Define("DIMENSIONS", discr.dimensions),
            Define("DOFS_PER_FACE", fplan.dofs_per_face),
            Define("THREADS_PER_FACE", fplan.threads_per_face()),
            Line(),
            Define("CONCURRENT_FACES", fplan.parallel_faces),
            Define("BLOCK_MB_COUNT", fplan.mbs_per_block),
            Line(),
            Define("FACEDOF_NR", "threadIdx.x"),
            Define("BLOCK_FACE", "threadIdx.y"),
            Line(),
            Define("FLUX_COUNT", len(self.fluxes)),
            Line(),
            Define("THREAD_NUM", "(FACEDOF_NR + BLOCK_FACE*THREADS_PER_FACE)"),
            Define("THREAD_COUNT", "(THREADS_PER_FACE*CONCURRENT_FACES)"),
            Define("COALESCING_THREAD_COUNT",
                "(THREAD_COUNT < 0x10 ? THREAD_COUNT : THREAD_COUNT & ~0xf)"),
            Line(),
            Define("DATA_BLOCK_SIZE", fdata.block_bytes),
            Define("ALIGNED_FACE_DOFS_PER_MB", fplan.aligned_face_dofs_per_microblock()),
            Define("ALIGNED_FACE_DOFS_PER_BLOCK",
                "(ALIGNED_FACE_DOFS_PER_MB*BLOCK_MB_COUNT)"),
            Line(),
            Define("FOF_BLOCK_BASE", "(blockIdx.x*ALIGNED_FACE_DOFS_PER_BLOCK)"),
            Line(),
            ] + ilist_data.code + [
            Line(),
            Value("texture<index_list_entry_t, 1, cudaReadModeElementType>",
                "tex_index_lists"),
            Line(),
            fdata.struct,
            Line(),
            CudaShared(Value("flux_data", "data")),
            ])

        if not fplan.direct_store:
            cmod.extend([
                CudaShared(
                    ArrayOf(
                        ArrayOf(
                            POD(float_type, "smem_fluxes_on_faces"),
                            "FLUX_COUNT"),
                        "ALIGNED_FACE_DOFS_PER_MB*BLOCK_MB_COUNT")
                    ),
                Line(),
                ])

        S = Statement
        f_body = Block()

        from hedge.backends.cuda.tools import get_load_code

        f_body.extend(get_load_code(
            dest="&data",
            base="gmem_facedata + blockIdx.x*DATA_BLOCK_SIZE",
            bytes="sizeof(flux_data)",
            descr="load face_pair data")
            +[S("__syncthreads()"), Line() ])

        def get_flux_code(flux_writer):
            flux_code = Block([])

            flux_code.extend([
                Initializer(Pointer(
                    Value("face_pair", "fpair")),
                    "data.facepairs+fpair_nr"),
                Initializer(
                    MaybeUnused(POD(numpy.uint32, "a_index")),
                    "fpair->a_base + tex1Dfetch(tex_index_lists, "
                    "fpair->a_ilist_index + FACEDOF_NR)"),
                Initializer(
                    MaybeUnused(POD(numpy.uint32, "b_index")),
                    "fpair->b_base + tex1Dfetch(tex_index_lists, "
                    "fpair->b_ilist_index + FACEDOF_NR)"),
                Line(),
                flux_writer(),
                Line(),
                S("fpair_nr += CONCURRENT_FACES")
                ])

            return flux_code

        flux_computation = Block([
            Comment("fluxes for dual-sided (intra-block) interior face pairs"),
            While("fpair_nr < data.header.same_facepairs_end",
                get_flux_code(lambda:
                    self.write_interior_flux_code(True))
                ),
            Line(),
            Comment("work around nvcc assertion failure"),
            S("fpair_nr+=1"),
            S("fpair_nr-=1"),
            Line(),
            Comment("fluxes for single-sided (inter-block) interior face pairs"),
            While("fpair_nr < data.header.diff_facepairs_end",
                get_flux_code(lambda:
                    self.write_interior_flux_code(False))
                ),
            Line(),
            Comment("fluxes for single-sided boundary face pairs"),
            While("fpair_nr < data.header.bdry_facepairs_end",
                get_flux_code(
                    lambda: self.write_boundary_flux_code(for_benchmark))
                ),
            ])

        f_body.extend_log_block("compute the fluxes", [
            Initializer(POD(numpy.uint32, "fpair_nr"), "BLOCK_FACE"),
            If("FACEDOF_NR < DOFS_PER_FACE", flux_computation)
            ])

        if not fplan.direct_store:
            f_body.extend([
                Line(),
                S("__syncthreads()"),
                Line()
                ])

            f_body.extend_log_block("store fluxes", [
                    #Assign("debugbuf[blockIdx.x]", "FOF_BLOCK_BASE"),
                    #Assign("debugbuf[0]", "FOF_BLOCK_BASE"),
                    #Assign("debugbuf[0]", "sizeof(face_pair)"),
                    For("unsigned word_nr = THREAD_NUM",
                        "word_nr < ALIGNED_FACE_DOFS_PER_MB*BLOCK_MB_COUNT",
                        "word_nr += COALESCING_THREAD_COUNT",
                        Block([Assign(
                            "gmem_fluxes_on_faces%d[FOF_BLOCK_BASE+word_nr]" % flux_nr,
                            "smem_fluxes_on_faces[%d][word_nr]" % flux_nr)
                            for flux_nr in range(len(self.fluxes))]
                           #+[If("isnan(smem_fluxes_on_faces[%d][word_nr])" % flux_nr,
                               #Block([
                                   #Assign("debugbuf[blockIdx.x]", "word_nr"),
                                   #])
                               #)
                            #for flux_nr in range(len(self.fluxes))]
                        )
                    )
                    ])
        if False:
            f_body.extend([
                    Assign("debugbuf[blockIdx.x*96+32+BLOCK_FACE*32+threadIdx.x]", "fpair_nr"),
                    Assign("debugbuf[blockIdx.x*96+16]", "data.header.same_facepairs_end"),
                    Assign("debugbuf[blockIdx.x*96+17]", "data.header.diff_facepairs_end"),
                    Assign("debugbuf[blockIdx.x*96+18]", "data.header.bdry_facepairs_end"),
                    ]
                    )

        # finish off ----------------------------------------------------------
        cmod.append(FunctionBody(f_decl, f_body))

        if not for_benchmark and "cuda_dump_kernels" in discr.debug:
            from hedge.tools import open_unique_debug_file
            open_unique_debug_file("flux_gather", ".cu").write(str(cmod))

        #from pycuda.tools import allow_user_edit
        mod = SourceModule(
                #allow_user_edit(cmod, "kernel.cu", "the flux kernel"),
                cmod,
                keep="cuda_keep_kernels" in discr.debug)
        expr_to_texture_map = dict(
                (dep_expr, mod.get_texref(
                    "field%d_tex" % self.dep_to_index[dep_expr]))
                for dep_expr in self.all_deps)

        index_list_texref = mod.get_texref("tex_index_lists")
        index_list_texref.set_address(
                ilist_data.device_memory,
                ilist_data.bytes)
        index_list_texref.set_format(
                cuda.dtype_to_array_format(ilist_data.type), 1)
        index_list_texref.set_flags(cuda.TRSF_READ_AS_INTEGER)

        func = mod.get_function("apply_flux")
        block = (fplan.threads_per_face(), fplan.parallel_faces, 1)
        func.prepare(
                (2+len(self.fluxes))*"P",
                texrefs=expr_to_texture_map.values()
                + [index_list_texref])

        if "cuda_flux" in discr.debug:
            print "flux: lmem=%d smem=%d regs=%d" % (
                    func.local_size_bytes,
                    func.shared_size_bytes,
                    func.num_regs)

        return block, func, expr_to_texture_map
示例#9
0
        Pointer, Module, Block, Initializer, Assign, Const
from cgen.opencl import CLKernel, CLGlobal, \
        CLRequiredWorkGroupSize

mod = Module([
    FunctionBody(
        CLKernel(
            CLRequiredWorkGroupSize(
                (local_size, ),
                FunctionDeclaration(Value("void", "add"),
                                    arg_decls=[
                                        CLGlobal(
                                            Pointer(Const(POD(dtype, name))))
                                        for name in ["tgt", "op1", "op2"]
                                    ]))),
        Block([
            Initializer(
                POD(numpy.int32,
                    "idx"), "get_local_id(0) + %d * get_group_id(0)" %
                (local_size * thread_strides))
        ] + [
            Assign(
                "tgt[idx+%d]" % (o * local_size), "op1[idx+%d] + op2[idx+%d]" %
                (o * local_size, o * local_size))
            for o in range(thread_strides)
        ]))
])

knl = cl.Program(ctx, str(mod)).build().add

knl(queue, (local_size * macroblock_count, ), (local_size, ), c_buf, a_buf,
示例#10
0
    def get_kernel(self, diff_op, elgroup, for_benchmark=False):
        from cgen import \
                Pointer, POD, Value, ArrayOf, Const, \
                Module, FunctionDeclaration, FunctionBody, Block, \
                Comment, Line, Define, Include, \
                Initializer, If, For, Statement, Assign

        from pycuda.tools import dtype_to_ctype
        from cgen.cuda import CudaShared, CudaGlobal

        discr = self.discr
        d = discr.dimensions
        dims = range(d)
        plan = self.plan
        given = plan.given

        elgroup, = discr.element_groups
        float_type = given.float_type

        f_decl = CudaGlobal(FunctionDeclaration(Value("void", "apply_diff_mat_smem"),
            [Pointer(POD(float_type, "debugbuf")), Pointer(POD(float_type, "field")), ]
            + [Pointer(POD(float_type, "drst%d_global" % i)) for i in dims]
            ))

        par = plan.parallelism

        cmod = Module([
                Include("pycuda-helpers.hpp"),
                ])

        if float_type == numpy.float64:
            cmod.append(Value("texture<fp_tex_double, 1, cudaReadModeElementType>",
                    "diff_rst_mat_tex"))
        elif float_type == numpy.float32:
            rst_channels = given.devdata.make_valid_tex_channel_count(d)
            cmod.append(Value("texture<float%d, 1, cudaReadModeElementType>"
                    % rst_channels, "diff_rst_mat_tex"))
        else:
            raise ValueError("unsupported float type: %s" % float_type)

        # only preimage size variation is supported here
        assert plan.image_dofs_per_el == given.dofs_per_el()
        assert plan.aligned_image_dofs_per_microblock == given.microblock.aligned_floats

        # FIXME: aligned_image_dofs_per_microblock must be divisible
        # by this, therefore hardcoding for now.
        chunk_size = 16

        cmod.extend([
                Line(),
                Define("DIMENSIONS", discr.dimensions),

                Define("IMAGE_DOFS_PER_EL", plan.image_dofs_per_el),
                Define("PREIMAGE_DOFS_PER_EL", plan.preimage_dofs_per_el),
                Define("ALIGNED_IMAGE_DOFS_PER_MB", plan.aligned_image_dofs_per_microblock),
                Define("ALIGNED_PREIMAGE_DOFS_PER_MB", plan.aligned_preimage_dofs_per_microblock),
                Define("ELS_PER_MB", given.microblock.elements),
                Define("IMAGE_DOFS_PER_MB", "(IMAGE_DOFS_PER_EL*ELS_PER_MB)"),
                Line(),
                Define("CHUNK_SIZE", chunk_size),
                Define("CHUNK_DOF", "threadIdx.x"),
                Define("PAR_MB_NR", "threadIdx.y"),
                Define("CHUNK_NR", "threadIdx.z"),
                Define("IMAGE_MB_DOF", "(CHUNK_NR*CHUNK_SIZE+CHUNK_DOF)"),
                Define("IMAGE_EL_DOF", "(IMAGE_MB_DOF - mb_el*IMAGE_DOFS_PER_EL)"),
                Line(),
                Define("MACROBLOCK_NR", "blockIdx.x"),
                Line(),
                Define("PAR_MB_COUNT", par.parallel),
                Define("INLINE_MB_COUNT", par.inline),
                Define("SEQ_MB_COUNT", par.serial),
                Line(),
                Define("GLOBAL_MB_NR_BASE",
                    "(MACROBLOCK_NR*PAR_MB_COUNT*INLINE_MB_COUNT*SEQ_MB_COUNT)"),
                Define("GLOBAL_MB_NR",
                    "(GLOBAL_MB_NR_BASE"
                    "+ (seq_mb_number*PAR_MB_COUNT + PAR_MB_NR)*INLINE_MB_COUNT)"),
                Define("GLOBAL_MB_IMAGE_DOF_BASE", "(GLOBAL_MB_NR*ALIGNED_IMAGE_DOFS_PER_MB)"),
                Define("GLOBAL_MB_PREIMAGE_DOF_BASE", "(GLOBAL_MB_NR*ALIGNED_PREIMAGE_DOFS_PER_MB)"),
                Line(),
                CudaShared(
                    ArrayOf(
                        ArrayOf(
                            ArrayOf(
                                POD(float_type, "smem_field"),
                                "PAR_MB_COUNT"),
                            "INLINE_MB_COUNT"),
                        "ALIGNED_PREIMAGE_DOFS_PER_MB")),
                Line(),
                ])

        S = Statement
        f_body = Block([
            Initializer(Const(POD(numpy.uint16, "mb_el")),
                "IMAGE_MB_DOF / IMAGE_DOFS_PER_EL"),
            Line(),
            ])

        # ---------------------------------------------------------------------
        def get_load_code():
            mb_img_dofs = plan.aligned_image_dofs_per_microblock
            mb_preimg_dofs = plan.aligned_preimage_dofs_per_microblock
            preimg_dofs_over_dofs = (mb_preimg_dofs+mb_img_dofs-1) // mb_img_dofs

            load_code = []
            store_code = []

            var_num = 0
            for load_block in range(preimg_dofs_over_dofs):
                for inl in range(par.inline):
                    # load and store are split for better pipelining
                    # compiler can't figure that out because of branch

                    var = "tmp%d" % var_num
                    var_num += 1
                    load_code.append(POD(float_type, var))

                    block_addr = "%d * ALIGNED_IMAGE_DOFS_PER_MB + IMAGE_MB_DOF" % load_block
                    load_instr = Assign(var,
                        "field[GLOBAL_MB_PREIMAGE_DOF_BASE"
                        " + %d*ALIGNED_PREIMAGE_DOFS_PER_MB"
                        " + %s]" % (inl, block_addr))
                    store_instr = Assign(
                            "smem_field[PAR_MB_NR][%d][%s]" % (inl, block_addr),
                            var
                            )
                    if (load_block+1)*mb_img_dofs >= mb_preimg_dofs:
                        cond = "%s < ALIGNED_PREIMAGE_DOFS_PER_MB" % block_addr
                        load_instr = If(cond, load_instr)
                        store_instr = If(cond, store_instr)

                    load_code.append(load_instr)
                    store_code.append(store_instr)
            return Block(load_code + [Line()] + store_code)

        def get_scalar_diff_code():
            code = []
            for inl in range(par.inline):
                for axis in dims:
                    code.append(
                        Initializer(POD(float_type, "d%drst%d" % (inl, axis)), 0))

            code.append(Line())

            tex_channels = ["x", "y", "z", "w"]

            store_code = Block()
            for inl in range(par.inline):
                for rst_axis in dims:
                    store_code.append(Assign(
                        "drst%d_global[GLOBAL_MB_IMAGE_DOF_BASE + "
                        "%d*ALIGNED_IMAGE_DOFS_PER_MB + IMAGE_MB_DOF]"
                        % (rst_axis, inl),
                        "d%drst%d" % (inl, rst_axis)
                        ))

            from hedge.backends.cuda.tools import unroll
            code.extend([
                Comment("everybody needs to be done with the old data"),
                S("__syncthreads()"),
                Line(),
                get_load_code(),
                Line(),
                Comment("all the new data must be loaded"),
                S("__syncthreads()"),
                Line(),
                ])

            if float_type == numpy.float32:
                code.append(Value("float%d" % rst_channels, "dmat_entries"))

            code.extend([
                POD(float_type, "field_value%d" % inl)
                for inl in range(par.inline)
                ]+[Line()])

            def unroll_body(j):
                result = [
                    Assign("field_value%d" % inl,
                        "smem_field[PAR_MB_NR][%d][mb_el*PREIMAGE_DOFS_PER_EL+%s]" % (inl, j))
                    for inl in range(par.inline)
                    ]

                if float_type == numpy.float32:
                    result.append(Assign("dmat_entries",
                        "tex1Dfetch(diff_rst_mat_tex, IMAGE_EL_DOF + %s*IMAGE_DOFS_PER_EL)" % j))
                    result.extend(
                        S("d%drst%d += dmat_entries.%s * field_value%d"
                            % (inl, axis, tex_channels[axis], inl))
                        for inl in range(par.inline)
                        for axis in dims)
                elif float_type == numpy.float64:
                    result.extend(
                        S("d%(inl)drst%(axis)d += "
                            "fp_tex1Dfetch(diff_rst_mat_tex, %(axis)d "
                            "+ DIMENSIONS*(IMAGE_EL_DOF + %(j)d*IMAGE_DOFS_PER_EL))"
                            "* field_value%(inl)d" % {
                            "inl": inl,
                            "axis": axis,
                            "j": j
                            })
                        for inl in range(par.inline)
                        for axis in dims)
                else:
                    assert False

                return result

            code.append(If("IMAGE_MB_DOF < IMAGE_DOFS_PER_MB", Block(unroll(unroll_body,
                    total_number=plan.preimage_dofs_per_el)
                    +[store_code])))

            return code

        f_body.extend([
            For("unsigned short seq_mb_number = 0",
                "seq_mb_number < SEQ_MB_COUNT",
                "++seq_mb_number",
                Block(get_scalar_diff_code())
                )
            ])

        # finish off ----------------------------------------------------------
        cmod.append(FunctionBody(f_decl, f_body))

        if not for_benchmark and "cuda_dump_kernels" in discr.debug:
            from hedge.tools import open_unique_debug_file
            open_unique_debug_file("diff", ".cu").write(str(cmod))

        mod = SourceModule(cmod,
                keep="cuda_keep_kernels" in discr.debug,
                #options=["--maxrregcount=16"]
                )

        func = mod.get_function("apply_diff_mat_smem")

        if "cuda_diff" in discr.debug:
            print "diff: lmem=%d smem=%d regs=%d" % (
                    func.local_size_bytes,
                    func.shared_size_bytes,
                    func.registers)

        diff_rst_mat_texref = mod.get_texref("diff_rst_mat_tex")
        gpu_diffmats = self.gpu_diffmats(diff_op, elgroup)

        if given.float_type == numpy.float32:
            gpu_diffmats.bind_to_texref_ext(diff_rst_mat_texref, rst_channels)
        elif given.float_type == numpy.float64:
            gpu_diffmats.bind_to_texref_ext(diff_rst_mat_texref,
                    allow_double_hack=True)
        else:
            assert False

        assert given.microblock.aligned_floats % chunk_size == 0
        block = (
                chunk_size,
                plan.parallelism.parallel,
                given.microblock.aligned_floats//chunk_size)

        func.prepare(
                ["PP"] + discr.dimensions*["P"],
                texrefs=[diff_rst_mat_texref])

        return block, func
示例#11
0
    def _init_lr_correction_libs(self):

        sph_gen = self.sph_gen

        def _re_lm(l, m): return l**2 + l + m

        assign_gen =  'double rhol = charge;\n'
        for lx in range(self.L):
            for mx in range(-lx, lx+1):

                res, ims = sph_gen.get_y_sym(lx, -mx)
                offset = _re_lm(lx, mx)

                assign_gen += ''.join(['MULTIPOLE[{}] += {} * rhol;\n'.format(*args) for args in (
                        (offset, str(res)),
                        (offset + self.L**2, str(ims))
                    )
                ])

                res, ims = sph_gen.get_y_sym(lx, mx)
                assign_gen += ''.join(['DOT_VEC[{}] += {} * rhol;\n'.format(*args) for args in (
                        (offset, str(res)),
                        (offset + self.L**2, '-1.0 * ' + str(ims))
                    )
                ])

            assign_gen += 'rhol *= radius;\n'

        

        co = self.solver.il[1]
        new27direct = 0.0
        ex = self.domain.extent
        for ox in co:
            # image of old pos
            dox = np.array((ex[0] * ox[0], ex[1] * ox[1], ex[2] * ox[2]))
            if ox != (0,0,0):
                new27direct -= 1.0 / np.linalg.norm(dox)

        offset_consts = ''
        bc27 = ''

        for oxi, ox in enumerate(co):

            offset_consts += '''
            const REAL dox{oxi} = EX * {OX};
            const REAL doy{oxi} = EY * {OY};
            const REAL doz{oxi} = EZ * {OZ};
            '''.format(
                oxi=str(oxi),
                OX=str(ox[0]),
                OY=str(ox[1]),
                OZ=str(ox[2]),
            )

            bc27 += '''
            const REAL dpx{oxi} = dox{oxi} + opx;
            const REAL dpy{oxi} = doy{oxi} + opy;
            const REAL dpz{oxi} = doz{oxi} + opz;

            const REAL ddx{oxi} = dpx{oxi} - npx;
            const REAL ddy{oxi} = dpy{oxi} - npy;
            const REAL ddz{oxi} = dpz{oxi} - npz;
            
            const REAL o_bbp{oxi} = 1.0 / sqrt(ddx{oxi}*ddx{oxi} + ddy{oxi}*ddy{oxi} + ddz{oxi}*ddz{oxi});
            energy27 += o_bbp{oxi};
            '''.format(
                oxi=str(oxi)
            )



        src = r'''
        
        namespace LR_SI {{

        static inline REAL apply_dipole_correction_split(
            const REAL * RESTRICT M,
            const REAL * RESTRICT E
        ){{
            
            REAL tmp = 0.0;

            tmp += (DIPOLE_SX * M[RE_1P1]) * E[RE_1P1];
            tmp += (DIPOLE_SX * M[RE_1P1]) * E[RE_1N1];
        
            tmp -= (DIPOLE_SY * M[IM_1P1]) * E[IM_1P1];
            tmp += (DIPOLE_SY * M[IM_1P1]) * E[IM_1N1];

            tmp += (DIPOLE_SZ * M[RE_1_0]) * E[RE_1_0];

            return tmp;
        }}

    
        static inline REAL linop_csr_both(
            const REAL * RESTRICT linop_data,
            const INT64 * RESTRICT linop_indptr,
            const INT64 * RESTRICT linop_indices,
            const REAL * RESTRICT x1,
            const REAL * RESTRICT E
        ){{
            
            INT64 data_ind = 0;
            REAL dot_tmp = 0.0;

            for(INT64 row=0 ; row<HALF_NCOMP ; row++){{

                REAL row_tmp_1 = 0.0;
                REAL row_tmp_2 = 0.0;

                for(INT64 col_ind=linop_indptr[row] ; col_ind<linop_indptr[row+1] ; col_ind++){{
                    const INT64 col = linop_indices[data_ind];
                    const REAL data = linop_data[data_ind];
                    data_ind++;
                    row_tmp_1 += data * x1[col];
                    row_tmp_2 += data * x1[col  + HALF_NCOMP];
                }}

                dot_tmp += row_tmp_1 * E[row] + row_tmp_2 * E[row + HALF_NCOMP];
            }}

            return dot_tmp;
        }}

        
        static inline void vector_diff(
            const REAL dx,
            const REAL dy,
            const REAL dz,
            const REAL charge,
                  REAL * MULTIPOLE,
                  REAL * DOT_VEC
        ){{
            const double xy2 = dx * dx + dy * dy;
            const double radius = sqrt(xy2 + dz * dz);
            const double theta = atan2(sqrt(xy2), dz);
            const double phi = atan2(dy, dx);
            {SPH_GEN}
            {ASSIGN_GEN}

        }}


        static inline REAL lr_energy_diff(
            const INT64             accept_flag,
            const REAL  * RESTRICT  old_position,
            const REAL  * RESTRICT  new_position,
            const REAL              charge,
            const REAL              old_energy,
                  REAL  * RESTRICT  existing_multipole,
                  REAL  * RESTRICT  existing_evector,
            const REAL  * RESTRICT  linop_data,
            const INT64 * RESTRICT  linop_indptr,
            const INT64 * RESTRICT  linop_indices
        ){{


            REAL mvector[NCOMP];
            REAL evector[NCOMP];
                
            // copy the existing vectors
            for(int ix=0 ; ix<NCOMP ; ix++){{
                mvector[ix] = existing_multipole[ix];
                evector[ix] = existing_evector[ix];
            }}


            // remove the old contribution
            vector_diff(old_position[0], old_position[1], old_position[2], -1.0 * charge, mvector, evector);
            // add the new contribution
            vector_diff(new_position[0], new_position[1], new_position[2], charge, mvector, evector);


            // cheap way to reuse this code for accepts
            if (accept_flag > 0){{
                
                for(int ix=0 ; ix<NCOMP ; ix++){{
                    existing_multipole[ix] = mvector[ix];
                    existing_evector[ix] = evector[ix];
                }}

            }}



            // apply the long range linear operator and get the new energy (minus dipole correction)
            REAL new_energy = 0.5 * linop_csr_both(
                linop_data, linop_indptr, linop_indices,
                mvector,
                evector
            );

            // add the dipole correction
            new_energy += 0.5 * apply_dipole_correction_split(
                mvector,
                evector
            );

            return new_energy - old_energy;

        }}
        
        
        
        static inline REAL self_contributon(
            const REAL  * RESTRICT  old_position,
            const REAL  * RESTRICT  new_position,
            const REAL              charge
        ){{
                
            const REAL opx = old_position[0];
            const REAL opy = old_position[1];
            const REAL opz = old_position[2];

            const REAL npx = new_position[0];
            const REAL npy = new_position[1];
            const REAL npz = new_position[2];

            {OFFSET_CONSTS}


            REAL energy27 = (DOMAIN_27_ENERGY);

            {BC27}


            return energy27 * charge * charge;

        }}


        int lr_self_interaction_inner(
            const INT64             accept_flag,
            const REAL  * RESTRICT  old_position,
            const REAL  * RESTRICT  new_position,
            const REAL              charge,
            const REAL              old_energy,
                  REAL  * RESTRICT  existing_multipole,
                  REAL  * RESTRICT  existing_evector,
            const REAL  * RESTRICT  linop_data,
            const INT64 * RESTRICT  linop_indptr,
            const INT64 * RESTRICT  linop_indices,
                  REAL  * RESTRICT  return_energy,
                  REAL  * RESTRICT TIME_TAKEN
        ){{

            std::chrono::high_resolution_clock::time_point _loop_timer_t0 = std::chrono::high_resolution_clock::now();

            REAL tmpu0 = lr_energy_diff(accept_flag, old_position, new_position, charge, old_energy, 
                existing_multipole, existing_evector, linop_data, linop_indptr, linop_indices);
            
            REAL tmpu1 = (accept_flag < 1) ? self_contributon(old_position, new_position, charge) : 0.0 ;
            
            *return_energy = -1.0 * tmpu0 + tmpu1;

            std::chrono::high_resolution_clock::time_point _loop_timer_t1 = std::chrono::high_resolution_clock::now();
            std::chrono::duration<double> _loop_timer_res = _loop_timer_t1 - _loop_timer_t0;
            *TIME_TAKEN = (double) _loop_timer_res.count();

            return 0;
        }}  
        
        }}

        extern "C" int lr_self_interaction(
            const INT64             accept_flag,
            const REAL  * RESTRICT  old_position,
            const REAL  * RESTRICT  new_position,
            const REAL              charge,
            const REAL              old_energy,
                  REAL  * RESTRICT  existing_multipole,
                  REAL  * RESTRICT  existing_evector,
            const REAL  * RESTRICT  linop_data,
            const INT64 * RESTRICT  linop_indptr,
            const INT64 * RESTRICT  linop_indices,
                  REAL  * RESTRICT  return_energy,
                  REAL  * RESTRICT TIME_TAKEN
        ) {{

            return LR_SI::lr_self_interaction_inner(
                accept_flag,
                old_position,
                new_position,
                charge,
                old_energy,
                existing_multipole,
                existing_evector,
                linop_data,
                linop_indptr,
                linop_indices,
                return_energy,
                TIME_TAKEN
            );

        }}


        '''.format(
            SPH_GEN=str(sph_gen.module),
            ASSIGN_GEN=str(assign_gen),
            OFFSET_CONSTS=str(offset_consts),
            BC27=str(bc27)
        )


        header = str(
            Module((
                Include('omp.h'),
                Include('stdio.h'),
                Include('math.h'),
                Include('chrono'),
                Define('INT64', 'int64_t'),
                Define('REAL', 'double'),
                Define('NCOMP', str(self.ncomp)),
                Define('HALF_NCOMP', str(self.L**2)),
                Define('DIPOLE_SX', str(self.lrc.dipole_correction[0])),
                Define('DIPOLE_SY', str(self.lrc.dipole_correction[1])),
                Define('DIPOLE_SZ', str(self.lrc.dipole_correction[2])),
                Define('RE_1P1', str(_re_lm(1, 1))),
                Define('RE_1_0', str(_re_lm(1, 0))),
                Define('RE_1N1', str(_re_lm(1,-1))),
                Define('IM_1P1', str(_re_lm(1, 1) + self.L**2)),
                Define('IM_1_0', str(_re_lm(1, 0) + self.L**2)),
                Define('DOMAIN_27_ENERGY', str(new27direct)),
                Define('IM_1N1', str(_re_lm(1,-1) + self.L**2)),
                Define('EX', self.domain.extent[0]),
                Define('EY', self.domain.extent[1]),
                Define('EZ', self.domain.extent[2]),
            ))
        )
        
        header_post = '''
            #undef NCOMP
            #undef HALF_NCOMP
            #undef DIPOLE_SX
            #undef DIPOLE_SY
            #undef DIPOLE_SZ
            #undef RE_1P1
            #undef RE_1_0
            #undef RE_1N1
            #undef IM_1P1
            #undef IM_1_0
            #undef DOMAIN_27_ENERGY
            #undef IM_1N1
            #undef EX
            #undef EY
            #undef EZ
        '''
        
        src = header + src + header_post

        self._lr_si_lib = lib.build.simple_lib_creator(header_code='', src_code=src)['lr_self_interaction']

        self.lib_sl_source = src


        self.lib_sl_parameters = [
            'const INT64             LR_SI_accept_flag',
            'const REAL  * RESTRICT  LR_SI_old_position',
            'const REAL  * RESTRICT  LR_SI_new_position',
            'const REAL              LR_SI_charge',
            'const REAL              LR_SI_old_energy',
            '      REAL  * RESTRICT  LR_SI_existing_multipole',
            '      REAL  * RESTRICT  LR_SI_existing_evector',
            'const REAL  * RESTRICT  LR_SI_linop_data',
            'const INT64 * RESTRICT  LR_SI_linop_indptr',
            'const INT64 * RESTRICT  LR_SI_linop_indices',
            '      REAL  * RESTRICT  LR_SI_return_energy',
            '      REAL  * RESTRICT  TIME_TAKEN',
        ]

        self.lib_sl_call = '''
        LR_SI::lr_self_interaction_inner(
            LR_SI_accept_flag,
            LR_SI_old_position,
            LR_SI_new_position,
            LR_SI_charge,
            LR_SI_old_energy,
            LR_SI_existing_multipole,
            LR_SI_existing_evector,
            LR_SI_linop_data,
            LR_SI_linop_indptr,
            LR_SI_linop_indices,
            LR_SI_return_energy,
            TIME_TAKEN
        );
        '''

        if not (self.boundary_condition == BCType.PBC):
            self.lib_sl_parameters = []
            self.lib_sl_call = ''
示例#12
0
    def get_kernel(self, fdata, ilist_data, for_benchmark):
        from cgen.cuda import CudaShared, CudaGlobal
        from pycuda.tools import dtype_to_ctype

        discr = self.discr
        given = self.plan.given
        fplan = self.plan
        d = discr.dimensions
        dims = range(d)

        elgroup, = discr.element_groups

        float_type = given.float_type

        f_decl = CudaGlobal(
            FunctionDeclaration(Value("void", "apply_flux"), [
                Pointer(POD(float_type, "debugbuf")),
                Pointer(POD(numpy.uint8, "gmem_facedata")),
            ] + [
                Pointer(POD(float_type, "gmem_fluxes_on_faces%d" % flux_nr))
                for flux_nr in range(len(self.fluxes))
            ]))

        cmod = Module()
        cmod.append(Include("pycuda-helpers.hpp"))

        for dep_expr in self.all_deps:
            cmod.extend([
                Value(
                    "texture<%s, 1, cudaReadModeElementType>" %
                    dtype_to_ctype(float_type, with_fp_tex_hack=True),
                    "field%d_tex" % self.dep_to_index[dep_expr])
            ])

        if fplan.flux_count != len(self.fluxes):
            from warnings import warn
            warn(
                "Flux count in flux execution plan different from actual flux count.\n"
                "You may want to specify the tune_for= kwarg in the Discretization\n"
                "constructor.")

        cmod.extend([
            Line(),
            Typedef(POD(float_type, "value_type")),
            Line(),
            flux_header_struct(float_type, discr.dimensions),
            Line(),
            face_pair_struct(float_type, discr.dimensions),
            Line(),
            Define("DIMENSIONS", discr.dimensions),
            Define("DOFS_PER_FACE", fplan.dofs_per_face),
            Define("THREADS_PER_FACE", fplan.threads_per_face()),
            Line(),
            Define("CONCURRENT_FACES", fplan.parallel_faces),
            Define("BLOCK_MB_COUNT", fplan.mbs_per_block),
            Line(),
            Define("FACEDOF_NR", "threadIdx.x"),
            Define("BLOCK_FACE", "threadIdx.y"),
            Line(),
            Define("FLUX_COUNT", len(self.fluxes)),
            Line(),
            Define("THREAD_NUM", "(FACEDOF_NR + BLOCK_FACE*THREADS_PER_FACE)"),
            Define("THREAD_COUNT", "(THREADS_PER_FACE*CONCURRENT_FACES)"),
            Define(
                "COALESCING_THREAD_COUNT",
                "(THREAD_COUNT < 0x10 ? THREAD_COUNT : THREAD_COUNT & ~0xf)"),
            Line(),
            Define("DATA_BLOCK_SIZE", fdata.block_bytes),
            Define("ALIGNED_FACE_DOFS_PER_MB",
                   fplan.aligned_face_dofs_per_microblock()),
            Define("ALIGNED_FACE_DOFS_PER_BLOCK",
                   "(ALIGNED_FACE_DOFS_PER_MB*BLOCK_MB_COUNT)"),
            Line(),
            Define("FOF_BLOCK_BASE",
                   "(blockIdx.x*ALIGNED_FACE_DOFS_PER_BLOCK)"),
            Line(),
        ] + ilist_data.code + [
            Line(),
            Value("texture<index_list_entry_t, 1, cudaReadModeElementType>",
                  "tex_index_lists"),
            Line(),
            fdata.struct,
            Line(),
            CudaShared(Value("flux_data", "data")),
        ])

        if not fplan.direct_store:
            cmod.extend([
                CudaShared(
                    ArrayOf(
                        ArrayOf(POD(float_type, "smem_fluxes_on_faces"),
                                "FLUX_COUNT"),
                        "ALIGNED_FACE_DOFS_PER_MB*BLOCK_MB_COUNT")),
                Line(),
            ])

        S = Statement
        f_body = Block()

        from hedge.backends.cuda.tools import get_load_code

        f_body.extend(
            get_load_code(dest="&data",
                          base="gmem_facedata + blockIdx.x*DATA_BLOCK_SIZE",
                          bytes="sizeof(flux_data)",
                          descr="load face_pair data") +
            [S("__syncthreads()"), Line()])

        def get_flux_code(flux_writer):
            flux_code = Block([])

            flux_code.extend([
                Initializer(Pointer(Value("face_pair", "fpair")),
                            "data.facepairs+fpair_nr"),
                Initializer(
                    MaybeUnused(POD(numpy.uint32, "a_index")),
                    "fpair->a_base + tex1Dfetch(tex_index_lists, "
                    "fpair->a_ilist_index + FACEDOF_NR)"),
                Initializer(
                    MaybeUnused(POD(numpy.uint32, "b_index")),
                    "fpair->b_base + tex1Dfetch(tex_index_lists, "
                    "fpair->b_ilist_index + FACEDOF_NR)"),
                Line(),
                flux_writer(),
                Line(),
                S("fpair_nr += CONCURRENT_FACES")
            ])

            return flux_code

        flux_computation = Block([
            Comment("fluxes for dual-sided (intra-block) interior face pairs"),
            While("fpair_nr < data.header.same_facepairs_end",
                  get_flux_code(lambda: self.write_interior_flux_code(True))),
            Line(),
            Comment("work around nvcc assertion failure"),
            S("fpair_nr+=1"),
            S("fpair_nr-=1"),
            Line(),
            Comment(
                "fluxes for single-sided (inter-block) interior face pairs"),
            While("fpair_nr < data.header.diff_facepairs_end",
                  get_flux_code(lambda: self.write_interior_flux_code(False))),
            Line(),
            Comment("fluxes for single-sided boundary face pairs"),
            While(
                "fpair_nr < data.header.bdry_facepairs_end",
                get_flux_code(
                    lambda: self.write_boundary_flux_code(for_benchmark))),
        ])

        f_body.extend_log_block("compute the fluxes", [
            Initializer(POD(numpy.uint32, "fpair_nr"), "BLOCK_FACE"),
            If("FACEDOF_NR < DOFS_PER_FACE", flux_computation)
        ])

        if not fplan.direct_store:
            f_body.extend([Line(), S("__syncthreads()"), Line()])

            f_body.extend_log_block(
                "store fluxes",
                [
                    #Assign("debugbuf[blockIdx.x]", "FOF_BLOCK_BASE"),
                    #Assign("debugbuf[0]", "FOF_BLOCK_BASE"),
                    #Assign("debugbuf[0]", "sizeof(face_pair)"),
                    For(
                        "unsigned word_nr = THREAD_NUM",
                        "word_nr < ALIGNED_FACE_DOFS_PER_MB*BLOCK_MB_COUNT",
                        "word_nr += COALESCING_THREAD_COUNT",
                        Block([
                            Assign(
                                "gmem_fluxes_on_faces%d[FOF_BLOCK_BASE+word_nr]"
                                % flux_nr,
                                "smem_fluxes_on_faces[%d][word_nr]" % flux_nr)
                            for flux_nr in range(len(self.fluxes))
                        ]
                              #+[If("isnan(smem_fluxes_on_faces[%d][word_nr])" % flux_nr,
                              #Block([
                              #Assign("debugbuf[blockIdx.x]", "word_nr"),
                              #])
                              #)
                              #for flux_nr in range(len(self.fluxes))]
                              ))
                ])
        if False:
            f_body.extend([
                Assign("debugbuf[blockIdx.x*96+32+BLOCK_FACE*32+threadIdx.x]",
                       "fpair_nr"),
                Assign("debugbuf[blockIdx.x*96+16]",
                       "data.header.same_facepairs_end"),
                Assign("debugbuf[blockIdx.x*96+17]",
                       "data.header.diff_facepairs_end"),
                Assign("debugbuf[blockIdx.x*96+18]",
                       "data.header.bdry_facepairs_end"),
            ])

        # finish off ----------------------------------------------------------
        cmod.append(FunctionBody(f_decl, f_body))

        if not for_benchmark and "cuda_dump_kernels" in discr.debug:
            from hedge.tools import open_unique_debug_file
            open_unique_debug_file("flux_gather", ".cu").write(str(cmod))

        #from pycuda.tools import allow_user_edit
        mod = SourceModule(
            #allow_user_edit(cmod, "kernel.cu", "the flux kernel"),
            cmod,
            keep="cuda_keep_kernels" in discr.debug)
        expr_to_texture_map = dict(
            (dep_expr,
             mod.get_texref("field%d_tex" % self.dep_to_index[dep_expr]))
            for dep_expr in self.all_deps)

        index_list_texref = mod.get_texref("tex_index_lists")
        index_list_texref.set_address(ilist_data.device_memory,
                                      ilist_data.bytes)
        index_list_texref.set_format(
            cuda.dtype_to_array_format(ilist_data.type), 1)
        index_list_texref.set_flags(cuda.TRSF_READ_AS_INTEGER)

        func = mod.get_function("apply_flux")
        block = (fplan.threads_per_face(), fplan.parallel_faces, 1)
        func.prepare(
            (2 + len(self.fluxes)) * "P",
            texrefs=expr_to_texture_map.values() + [index_list_texref])

        if "cuda_flux" in discr.debug:
            print "flux: lmem=%d smem=%d regs=%d" % (
                func.local_size_bytes, func.shared_size_bytes, func.num_regs)

        return block, func, expr_to_texture_map
示例#13
0
    def get_kernel(self, diff_op_cls, elgroup, for_benchmark=False):
        from cgen import \
                Pointer, POD, Value, ArrayOf, \
                Module, FunctionDeclaration, FunctionBody, Block, \
                Line, Define, Include, \
                Initializer, If, For, Statement, Assign

        from cgen import dtype_to_ctype
        from cgen.cuda import CudaShared, CudaGlobal

        discr = self.discr
        d = discr.dimensions
        dims = range(d)
        given = self.plan.given

        par = self.plan.parallelism

        diffmat_data = self.gpu_diffmats(diff_op_cls, elgroup)
        elgroup, = discr.element_groups

        float_type = given.float_type

        f_decl = CudaGlobal(FunctionDeclaration(Value("void", "apply_diff_mat"),
            [Pointer(POD(numpy.uint8, "gmem_diff_rst_mat")),
                #Pointer(POD(float_type, "debugbuf")),
                ] + [Pointer(POD(float_type, "drst%d_global" % i)) for i in dims]
            ))

        rst_channels = given.devdata.make_valid_tex_channel_count(d)
        cmod = Module([
                Include("pycuda-helpers.hpp"),
                Line(),
                Value("texture<fp_tex_%s, 1, cudaReadModeElementType>"
                    % dtype_to_ctype(float_type),
                    "field_tex"),
                Line(),
                Define("DIMENSIONS", discr.dimensions),
                Define("DOFS_PER_EL", given.dofs_per_el()),
                Line(),
                Define("SEGMENT_DOF", "threadIdx.x"),
                Define("PAR_MB_NR", "threadIdx.y"),
                Line(),
                Define("MB_SEGMENT", "blockIdx.x"),
                Define("MACROBLOCK_NR", "blockIdx.y"),
                Line(),
                Define("DOFS_PER_SEGMENT", self.plan.segment_size),
                Define("SEGMENTS_PER_MB", self.plan.segments_per_microblock()),
                Define("ALIGNED_DOFS_PER_MB", given.microblock.aligned_floats),
                Define("ELS_PER_MB", given.microblock.elements),
                Line(),
                Define("PAR_MB_COUNT", par.parallel),
                Define("INLINE_MB_COUNT", par.inline),
                Define("SEQ_MB_COUNT", par.serial),
                Line(),
                Define("THREAD_NUM", "(SEGMENT_DOF+PAR_MB_NR*DOFS_PER_SEGMENT)"),
                Define("COALESCING_THREAD_COUNT", "(PAR_MB_COUNT*DOFS_PER_SEGMENT)"),
                Line(),
                Define("MB_DOF_BASE", "(MB_SEGMENT*DOFS_PER_SEGMENT)"),
                Define("MB_DOF", "(MB_DOF_BASE+SEGMENT_DOF)"),
                Define("GLOBAL_MB_NR_BASE",
                    "(MACROBLOCK_NR*PAR_MB_COUNT*INLINE_MB_COUNT*SEQ_MB_COUNT)"),
                Define("GLOBAL_MB_NR",
                    "(GLOBAL_MB_NR_BASE"
                    "+ (seq_mb_number*PAR_MB_COUNT + PAR_MB_NR)*INLINE_MB_COUNT)"),
                Define("GLOBAL_MB_DOF_BASE", "(GLOBAL_MB_NR*ALIGNED_DOFS_PER_MB)"),
                Line(),
                Define("DIFFMAT_SEGMENT_FLOATS", diffmat_data.block_floats),
                Define("DIFFMAT_SEGMENT_BYTES", "(DIFFMAT_SEGMENT_FLOATS*%d)"
                     % given.float_size()),
                Define("DIFFMAT_COLUMNS", diffmat_data.matrix_columns),
                Line(),
                CudaShared(ArrayOf(POD(float_type, "smem_diff_rst_mat"),
                    "DIFFMAT_COLUMNS*DOFS_PER_SEGMENT")),
                Line(),
                ])

        S = Statement
        f_body = Block()

        f_body.extend_log_block("calculate responsibility data", [
            Initializer(POD(numpy.uint16, "mb_el"),
                "MB_DOF/DOFS_PER_EL"),
            ])

        from hedge.backends.cuda.tools import get_load_code
        f_body.extend(
            get_load_code(
                dest="smem_diff_rst_mat",
                base="gmem_diff_rst_mat + MB_SEGMENT*DIFFMAT_SEGMENT_BYTES",
                bytes="DIFFMAT_SEGMENT_BYTES",
                descr="load diff mat segment")
            +[S("__syncthreads()"), Line()])

        # ---------------------------------------------------------------------
        def get_scalar_diff_code():
            code = []
            for inl in range(par.inline):
                for axis in dims:
                    code.append(
                        Initializer(POD(float_type, "d%drst%d" % (inl, axis)), 0))

            code.append(Line())

            def get_mat_entry(row, col, axis):
                return ("smem_diff_rst_mat["
                        "%(row)s*DIFFMAT_COLUMNS + %(axis)s*DOFS_PER_EL"
                        " + %(col)s"
                        "]" % {"row":row, "col":col, "axis":axis}
                        )

            tex_channels = ["x", "y", "z", "w"]
            from hedge.backends.cuda.tools import unroll
            code.extend(
                    [POD(float_type, "field_value%d" % inl)
                        for inl in range(par.inline)]
                    +[Line()]
                    +unroll(lambda j: [
                        Assign("field_value%d" % inl,
                            "fp_tex1Dfetch(field_tex, GLOBAL_MB_DOF_BASE + %d*ALIGNED_DOFS_PER_MB "
                            "+ mb_el*DOFS_PER_EL + %s)" % (inl, j)
                            )
                        for inl in range(par.inline)]
                        +[Line()]
                        +[S("d%drst%d += %s * field_value%d"
                            % (inl, axis, get_mat_entry("SEGMENT_DOF", j, axis), inl))
                        for axis in dims
                        for inl in range(par.inline)]
                        +[Line()],
                        given.dofs_per_el(), self.plan.max_unroll)
                    )

            store_code = Block()
            for inl in range(par.inline):
                for rst_axis in dims:
                    store_code.append(Assign(
                        "drst%d_global[GLOBAL_MB_DOF_BASE"
                        " + %d*ALIGNED_DOFS_PER_MB + MB_DOF]" % (rst_axis, inl),
                        "d%drst%d" % (inl, rst_axis),
                        ))

            code.append(If("MB_DOF < DOFS_PER_EL*ELS_PER_MB", store_code))

            return code

        f_body.extend([
            For("unsigned short seq_mb_number = 0",
                "seq_mb_number < SEQ_MB_COUNT",
                "++seq_mb_number",
                Block(get_scalar_diff_code()))
            ])

        # finish off ----------------------------------------------------------
        cmod.append(FunctionBody(f_decl, f_body))

        if not for_benchmark and "cuda_dump_kernels" in discr.debug:
            from hedge.tools import open_unique_debug_file
            open_unique_debug_file("diff", ".cu").write(str(cmod))

        mod = SourceModule(cmod,
                keep="cuda_keep_kernels" in discr.debug,
                #options=["--maxrregcount=10"]
                )

        field_texref = mod.get_texref("field_tex")

        func = mod.get_function("apply_diff_mat")
        func.prepare(
                discr.dimensions*[float_type] + ["P"],
                block=(self.plan.segment_size, par.parallel, 1),
                texrefs=[field_texref])

        if "cuda_diff" in discr.debug:
            print "diff: lmem=%d smem=%d regs=%d" % (
                    func.local_size_bytes,
                    func.shared_size_bytes,
                    func.num_regs)

        return func, field_texref
示例#14
0
    def get_kernel(self, diff_op_cls, elgroup, for_benchmark=False):
        from cgen import \
                Pointer, POD, Value, ArrayOf, \
                Module, FunctionDeclaration, FunctionBody, Block, \
                Line, Define, Include, \
                Initializer, If, For, Statement, Assign

        from cgen import dtype_to_ctype
        from cgen.cuda import CudaShared, CudaGlobal

        discr = self.discr
        d = discr.dimensions
        dims = range(d)
        given = self.plan.given

        par = self.plan.parallelism

        diffmat_data = self.gpu_diffmats(diff_op_cls, elgroup)
        elgroup, = discr.element_groups

        float_type = given.float_type

        f_decl = CudaGlobal(
            FunctionDeclaration(
                Value("void", "apply_diff_mat"),
                [
                    Pointer(POD(numpy.uint8, "gmem_diff_rst_mat")),
                    #Pointer(POD(float_type, "debugbuf")),
                ] +
                [Pointer(POD(float_type, "drst%d_global" % i)) for i in dims]))

        rst_channels = given.devdata.make_valid_tex_channel_count(d)
        cmod = Module([
            Include("pycuda-helpers.hpp"),
            Line(),
            Value(
                "texture<fp_tex_%s, 1, cudaReadModeElementType>" %
                dtype_to_ctype(float_type), "field_tex"),
            Line(),
            Define("DIMENSIONS", discr.dimensions),
            Define("DOFS_PER_EL", given.dofs_per_el()),
            Line(),
            Define("SEGMENT_DOF", "threadIdx.x"),
            Define("PAR_MB_NR", "threadIdx.y"),
            Line(),
            Define("MB_SEGMENT", "blockIdx.x"),
            Define("MACROBLOCK_NR", "blockIdx.y"),
            Line(),
            Define("DOFS_PER_SEGMENT", self.plan.segment_size),
            Define("SEGMENTS_PER_MB", self.plan.segments_per_microblock()),
            Define("ALIGNED_DOFS_PER_MB", given.microblock.aligned_floats),
            Define("ELS_PER_MB", given.microblock.elements),
            Line(),
            Define("PAR_MB_COUNT", par.parallel),
            Define("INLINE_MB_COUNT", par.inline),
            Define("SEQ_MB_COUNT", par.serial),
            Line(),
            Define("THREAD_NUM", "(SEGMENT_DOF+PAR_MB_NR*DOFS_PER_SEGMENT)"),
            Define("COALESCING_THREAD_COUNT",
                   "(PAR_MB_COUNT*DOFS_PER_SEGMENT)"),
            Line(),
            Define("MB_DOF_BASE", "(MB_SEGMENT*DOFS_PER_SEGMENT)"),
            Define("MB_DOF", "(MB_DOF_BASE+SEGMENT_DOF)"),
            Define(
                "GLOBAL_MB_NR_BASE",
                "(MACROBLOCK_NR*PAR_MB_COUNT*INLINE_MB_COUNT*SEQ_MB_COUNT)"),
            Define(
                "GLOBAL_MB_NR", "(GLOBAL_MB_NR_BASE"
                "+ (seq_mb_number*PAR_MB_COUNT + PAR_MB_NR)*INLINE_MB_COUNT)"),
            Define("GLOBAL_MB_DOF_BASE", "(GLOBAL_MB_NR*ALIGNED_DOFS_PER_MB)"),
            Line(),
            Define("DIFFMAT_SEGMENT_FLOATS", diffmat_data.block_floats),
            Define("DIFFMAT_SEGMENT_BYTES",
                   "(DIFFMAT_SEGMENT_FLOATS*%d)" % given.float_size()),
            Define("DIFFMAT_COLUMNS", diffmat_data.matrix_columns),
            Line(),
            CudaShared(
                ArrayOf(POD(float_type, "smem_diff_rst_mat"),
                        "DIFFMAT_COLUMNS*DOFS_PER_SEGMENT")),
            Line(),
        ])

        S = Statement
        f_body = Block()

        f_body.extend_log_block("calculate responsibility data", [
            Initializer(POD(numpy.uint16, "mb_el"), "MB_DOF/DOFS_PER_EL"),
        ])

        from hedge.backends.cuda.tools import get_load_code
        f_body.extend(
            get_load_code(
                dest="smem_diff_rst_mat",
                base="gmem_diff_rst_mat + MB_SEGMENT*DIFFMAT_SEGMENT_BYTES",
                bytes="DIFFMAT_SEGMENT_BYTES",
                descr="load diff mat segment") +
            [S("__syncthreads()"), Line()])

        # ---------------------------------------------------------------------
        def get_scalar_diff_code():
            code = []
            for inl in range(par.inline):
                for axis in dims:
                    code.append(
                        Initializer(POD(float_type, "d%drst%d" % (inl, axis)),
                                    0))

            code.append(Line())

            def get_mat_entry(row, col, axis):
                return ("smem_diff_rst_mat["
                        "%(row)s*DIFFMAT_COLUMNS + %(axis)s*DOFS_PER_EL"
                        " + %(col)s"
                        "]" % {
                            "row": row,
                            "col": col,
                            "axis": axis
                        })

            tex_channels = ["x", "y", "z", "w"]
            from hedge.backends.cuda.tools import unroll
            code.extend([
                POD(float_type, "field_value%d" % inl)
                for inl in range(par.inline)
            ] + [Line()] + unroll(
                lambda j: [
                    Assign(
                        "field_value%d" % inl,
                        "fp_tex1Dfetch(field_tex, GLOBAL_MB_DOF_BASE + %d*ALIGNED_DOFS_PER_MB "
                        "+ mb_el*DOFS_PER_EL + %s)" % (inl, j))
                    for inl in range(par.inline)
                ] + [Line()] + [
                    S("d%drst%d += %s * field_value%d" %
                      (inl, axis, get_mat_entry("SEGMENT_DOF", j, axis), inl))
                    for axis in dims for inl in range(par.inline)
                ] + [Line()], given.dofs_per_el(), self.plan.max_unroll))

            store_code = Block()
            for inl in range(par.inline):
                for rst_axis in dims:
                    store_code.append(
                        Assign(
                            "drst%d_global[GLOBAL_MB_DOF_BASE"
                            " + %d*ALIGNED_DOFS_PER_MB + MB_DOF]" %
                            (rst_axis, inl),
                            "d%drst%d" % (inl, rst_axis),
                        ))

            code.append(If("MB_DOF < DOFS_PER_EL*ELS_PER_MB", store_code))

            return code

        f_body.extend([
            For("unsigned short seq_mb_number = 0",
                "seq_mb_number < SEQ_MB_COUNT", "++seq_mb_number",
                Block(get_scalar_diff_code()))
        ])

        # finish off ----------------------------------------------------------
        cmod.append(FunctionBody(f_decl, f_body))

        if not for_benchmark and "cuda_dump_kernels" in discr.debug:
            from hedge.tools import open_unique_debug_file
            open_unique_debug_file("diff", ".cu").write(str(cmod))

        mod = SourceModule(
            cmod,
            keep="cuda_keep_kernels" in discr.debug,
            #options=["--maxrregcount=10"]
        )

        field_texref = mod.get_texref("field_tex")

        func = mod.get_function("apply_diff_mat")
        func.prepare(discr.dimensions * [float_type] + ["P"],
                     block=(self.plan.segment_size, par.parallel, 1),
                     texrefs=[field_texref])

        if "cuda_diff" in discr.debug:
            print "diff: lmem=%d smem=%d regs=%d" % (
                func.local_size_bytes, func.shared_size_bytes, func.num_regs)

        return func, field_texref
示例#15
0
    def get_kernel(self, with_scaling, for_benchmark=False):
        from cgen import \
                Pointer, POD, Value, ArrayOf, \
                Module, FunctionDeclaration, FunctionBody, Block, \
                Line, Define, Include, \
                Initializer, If, For, Statement, Assign, \
                ArrayInitializer

        from cgen import dtype_to_ctype
        from cgen.cuda import CudaShared, CudaConstant, CudaGlobal

        discr = self.discr
        d = discr.dimensions
        dims = range(d)
        given = self.plan.given

        float_type = given.float_type

        f_decl = CudaGlobal(
            FunctionDeclaration(Value("void", "apply_el_local_mat_smem_mat"), [
                Pointer(POD(float_type, "out_vector")),
                Pointer(POD(numpy.uint8, "gmem_matrix")),
                Pointer(POD(float_type, "debugbuf")),
                POD(numpy.uint32, "microblock_count"),
            ]))

        cmod = Module([
            Include("pycuda-helpers.hpp"),
            Line(),
            Value(
                "texture<fp_tex_%s, 1, cudaReadModeElementType>" %
                dtype_to_ctype(float_type), "in_vector_tex"),
        ])
        if with_scaling:
            cmod.append(
                Value(
                    "texture<fp_tex_%s, 1, cudaReadModeElementType>" %
                    dtype_to_ctype(float_type), "scaling_tex"), )

        par = self.plan.parallelism

        cmod.extend([
            Line(),
            Define("DIMENSIONS", discr.dimensions),
            Define("DOFS_PER_EL", given.dofs_per_el()),
            Define("PREIMAGE_DOFS_PER_EL", self.plan.preimage_dofs_per_el),
            Line(),
            Define("SEGMENT_DOF", "threadIdx.x"),
            Define("PAR_MB_NR", "threadIdx.y"),
            Line(),
            Define("MB_SEGMENT", "blockIdx.x"),
            Define("MACROBLOCK_NR", "blockIdx.y"),
            Line(),
            Define("DOFS_PER_SEGMENT", self.plan.segment_size),
            Define("SEGMENTS_PER_MB", self.plan.segments_per_microblock()),
            Define("ALIGNED_DOFS_PER_MB", given.microblock.aligned_floats),
            Define("ALIGNED_PREIMAGE_DOFS_PER_MB",
                   self.plan.aligned_preimage_dofs_per_microblock),
            Define("MB_EL_COUNT", given.microblock.elements),
            Line(),
            Define("PAR_MB_COUNT", par.parallel),
            Define("INLINE_MB_COUNT", par.inline),
            Define("SEQ_MB_COUNT", par.serial),
            Line(),
            Define("THREAD_NUM", "(SEGMENT_DOF+PAR_MB_NR*DOFS_PER_SEGMENT)"),
            Define("COALESCING_THREAD_COUNT",
                   "(PAR_MB_COUNT*DOFS_PER_SEGMENT)"),
            Line(),
            Define("MB_DOF_BASE", "(MB_SEGMENT*DOFS_PER_SEGMENT)"),
            Define("MB_DOF", "(MB_DOF_BASE+SEGMENT_DOF)"),
            Define(
                "GLOBAL_MB_NR_BASE",
                "(MACROBLOCK_NR*PAR_MB_COUNT*INLINE_MB_COUNT*SEQ_MB_COUNT)"),
            Define(
                "GLOBAL_MB_NR", "(GLOBAL_MB_NR_BASE"
                "+ (seq_mb_number*PAR_MB_COUNT + PAR_MB_NR)*INLINE_MB_COUNT)"),
            Define("GLOBAL_MB_DOF_BASE", "(GLOBAL_MB_NR*ALIGNED_DOFS_PER_MB)"),
            Define("GLOBAL_MB_PREIMG_DOF_BASE",
                   "(GLOBAL_MB_NR*ALIGNED_PREIMAGE_DOFS_PER_MB)"),
            Line(),
            Define("MATRIX_COLUMNS", self.plan.gpu_matrix_columns()),
            Define("MATRIX_SEGMENT_FLOATS",
                   self.plan.gpu_matrix_block_floats()),
            Define("MATRIX_SEGMENT_BYTES",
                   "(MATRIX_SEGMENT_FLOATS*%d)" % given.float_size()),
            Line(),
            CudaShared(
                ArrayOf(POD(float_type, "smem_matrix"),
                        "MATRIX_SEGMENT_FLOATS")),
            CudaShared(
                ArrayOf(
                    ArrayOf(
                        ArrayOf(POD(float_type, "dof_buffer"), "PAR_MB_COUNT"),
                        "INLINE_MB_COUNT"), "DOFS_PER_SEGMENT"), ),
            CudaShared(POD(numpy.uint16, "segment_start_el")),
            CudaShared(POD(numpy.uint16, "segment_stop_el")),
            CudaShared(POD(numpy.uint16, "segment_el_count")),
            Line(),
            ArrayInitializer(
                CudaConstant(
                    ArrayOf(POD(numpy.uint32, "segment_start_el_lookup"),
                            "SEGMENTS_PER_MB")),
                [(chk * self.plan.segment_size) // given.dofs_per_el()
                 for chk in range(self.plan.segments_per_microblock())]),
            ArrayInitializer(
                CudaConstant(
                    ArrayOf(POD(numpy.uint32, "segment_stop_el_lookup"),
                            "SEGMENTS_PER_MB")),
                [
                    min(given.microblock.elements,
                        (chk * self.plan.segment_size +
                         self.plan.segment_size - 1) // given.dofs_per_el() +
                        1)
                    for chk in range(self.plan.segments_per_microblock())
                ]),
        ])

        S = Statement
        f_body = Block()

        f_body.extend_log_block(
            "calculate this dof's element",
            [Initializer(POD(numpy.uint8, "mb_el"), "MB_DOF/DOFS_PER_EL")])

        if self.plan.use_prefetch_branch:
            f_body.extend_log_block("calculate segment responsibility data", [
                If(
                    "THREAD_NUM==0",
                    Block([
                        Assign("segment_start_el",
                               "segment_start_el_lookup[MB_SEGMENT]"),
                        Assign("segment_stop_el",
                               "segment_stop_el_lookup[MB_SEGMENT]"),
                        Assign("segment_el_count",
                               "segment_stop_el-segment_start_el"),
                    ])),
                S("__syncthreads()")
            ])

        from hedge.backends.cuda.tools import get_load_code
        f_body.extend(
            get_load_code(dest="smem_matrix",
                          base=(
                              "gmem_matrix + MB_SEGMENT*MATRIX_SEGMENT_BYTES"),
                          bytes="MATRIX_SEGMENT_BYTES",
                          descr="load matrix segment") +
            [S("__syncthreads()")])

        # ---------------------------------------------------------------------
        def get_batched_fetch_mat_mul_code(el_fetch_count):
            result = []
            dofs = range(self.plan.preimage_dofs_per_el)

            for load_segment_start in range(0, self.plan.preimage_dofs_per_el,
                                            self.plan.segment_size):
                result.extend([S("__syncthreads()")] + [
                    Assign(
                        "dof_buffer[PAR_MB_NR][%d][SEGMENT_DOF]" %
                        inl, "fp_tex1Dfetch(in_vector_tex, "
                        "GLOBAL_MB_PREIMG_DOF_BASE"
                        " + %d*ALIGNED_PREIMAGE_DOFS_PER_MB"
                        " + (segment_start_el)*PREIMAGE_DOFS_PER_EL + %d + SEGMENT_DOF)"
                        % (inl, load_segment_start))
                    for inl in range(par.inline)
                ] + [
                    S("__syncthreads()"),
                    Line(),
                ])

                for dof in dofs[load_segment_start:load_segment_start +
                                self.plan.segment_size]:
                    for inl in range(par.inline):
                        result.append(
                            S("result%d += "
                              "smem_matrix[SEGMENT_DOF*MATRIX_COLUMNS + %d]"
                              "*"
                              "dof_buffer[PAR_MB_NR][%d][%d]" %
                              (inl, dof, inl, dof - load_segment_start)))
                result.append(Line())
            return result

        from hedge.backends.cuda.tools import unroll

        def get_direct_tex_mat_mul_code():
            return (
                [POD(float_type, "fof%d" % inl) for inl in range(par.inline)] +
                [POD(float_type, "lm"), Line()] + unroll(
                    lambda j: [
                        Assign(
                            "fof%d" % inl,
                            "fp_tex1Dfetch(in_vector_tex, "
                            "GLOBAL_MB_PREIMG_DOF_BASE"
                            " + %(inl)d * ALIGNED_PREIMAGE_DOFS_PER_MB"
                            " + mb_el*PREIMAGE_DOFS_PER_EL+%(j)s)" % {
                                "j": j,
                                "inl": inl,
                                "row": "SEGMENT_DOF"
                            },
                        ) for inl in range(par.inline)
                    ] + [
                        Assign(
                            "lm",
                            "smem_matrix["
                            "%(row)s*MATRIX_COLUMNS + %(j)s]" % {
                                "j": j,
                                "row": "SEGMENT_DOF"
                            },
                        )
                    ] + [
                        S("result%(inl)d += fof%(inl)d*lm" % {"inl": inl})
                        for inl in range(par.inline)
                    ],
                    total_number=self.plan.preimage_dofs_per_el,
                    max_unroll=self.plan.max_unroll) + [Line()])

        def get_mat_mul_code(el_fetch_count):
            if el_fetch_count == 1:
                return get_batched_fetch_mat_mul_code(el_fetch_count)
            else:
                return get_direct_tex_mat_mul_code()

        def mat_mul_outer_loop(fetch_count):
            if with_scaling:
                inv_jac_multiplier = (
                    "fp_tex1Dfetch(scaling_tex,"
                    "(GLOBAL_MB_NR + %(inl)d)*MB_EL_COUNT + mb_el)")
            else:
                inv_jac_multiplier = "1"

            write_condition = "MB_DOF < DOFS_PER_EL*MB_EL_COUNT"
            if self.with_index_check:
                write_condition += " && GLOBAL_MB_NR < microblock_count"
            return For(
                "unsigned short seq_mb_number = 0",
                "seq_mb_number < SEQ_MB_COUNT", "++seq_mb_number",
                Block([
                    Initializer(POD(float_type, "result%d" % inl), 0)
                    for inl in range(par.inline)
                ] + [Line()] + get_mat_mul_code(fetch_count) + [
                    If(
                        write_condition,
                        Block([
                            Assign(
                                "out_vector[GLOBAL_MB_DOF_BASE"
                                " + %d*ALIGNED_DOFS_PER_MB"
                                " + MB_DOF]" % inl, "result%d * %s" %
                                (inl, (inv_jac_multiplier % {
                                    "inl": inl
                                }))) for inl in range(par.inline)
                        ]))
                ]))

        if self.plan.use_prefetch_branch:
            from cgen import make_multiple_ifs
            f_body.append(
                make_multiple_ifs([
                    ("segment_el_count == %d" % fetch_count,
                     mat_mul_outer_loop(fetch_count)) for fetch_count in range(
                         1,
                         self.plan.max_elements_touched_by_segment() + 1)
                ]))
        else:
            f_body.append(mat_mul_outer_loop(0))

        # finish off ----------------------------------------------------------
        cmod.append(FunctionBody(f_decl, f_body))

        if not for_benchmark and "cuda_dump_kernels" in discr.debug:
            from hedge.tools import open_unique_debug_file
            open_unique_debug_file(self.plan.debug_name,
                                   ".cu").write(str(cmod))

        mod = SourceModule(
            cmod,
            keep="cuda_keep_kernels" in discr.debug,
            #options=["--maxrregcount=12"]
        )

        func = mod.get_function("apply_el_local_mat_smem_mat")

        if self.plan.debug_name in discr.debug:
            print "%s: lmem=%d smem=%d regs=%d" % (
                self.plan.debug_name, func.local_size_bytes,
                func.shared_size_bytes, func.num_regs)

        in_vector_texref = mod.get_texref("in_vector_tex")
        texrefs = [in_vector_texref]

        if with_scaling:
            scaling_texref = mod.get_texref("scaling_tex")
            texrefs.append(scaling_texref)
        else:
            scaling_texref = None

        func.prepare("PPPI",
                     block=(self.plan.segment_size,
                            self.plan.parallelism.parallel, 1),
                     texrefs=texrefs)

        return func, in_vector_texref, scaling_texref