def summarize(gt, agg): """Scatterplot matrix of aggregated phenotypes vs genotypes.""" for i, ai in enumerate(agg.dtype.names): for j, gj in enumerate(gt.dtype.names): spij(len(agg.dtype.names), len(gt.dtype.names), i, j) plt.plot(gt[gj], agg[ai], 'o') xmin, xmax, ymin, ymax = plt.axis() ypad = 0.1 * (ymax - ymin) plt.axis([xmin - 0.5, xmax + 0.5, -ypad, ymax + ypad]) plt.axis() if i == len(agg.dtype) - 1: plt.xlabel(gj) if j == 0: plt.ylabel(ai)
tweak_legend() title("Variable gap protocol, I_CaL") ### List of models def model(name): def result(): plt.title(name) axis("off") return result mod = [model(i) for i in "Hodgkin-Huxley FitzHugh-Nagumo Luo-Rudy Bondarenko".split()] exp = [exp_pace, exp_p1p2, exp_vargap] vis = [vis_ap, vis_ct, vis_p1p2, vis_vargap] panels = mod, exp, vis m = max([len(i) for i in panels]) n = len(panels) plt.figure() for j, panelj in enumerate(panels): for i, panelij in enumerate(panelj): # spij(m, n, i, j) spij(n, m, j, i) panelij() plt.show()