def backward_gpu(self, x, gy): n, out_c, out_h, out_w = x[0].shape c, h, w = gy[0].shape[1:] gx = cuda.empty((n, out_c, out_h, out_w), dtype=numpy.float32) if cudnn.enabled and self.use_cudnn: handle = cudnn.get_default_handle() gy_desc = cudnn.get_tensor_desc(gy[0], h, w) gx_desc = cudnn.get_tensor_desc(gx, out_h, out_w) algo = libcudnn.cudnnGetConvolutionForwardAlgorithm( handle, gy_desc.value, self.filter_desc.value, self.conv_desc.value, gx_desc.value, _fwd_pref, self.max_workspace_size) workspace_size = libcudnn.cudnnGetConvolutionForwardWorkspaceSize( handle, gy_desc.value, self.filter_desc.value, self.conv_desc.value, gx_desc.value, algo).value workspace = cuda.empty( (max(workspace_size // 4, 1),), dtype=numpy.float32) libcudnn.cudnnConvolutionForward( handle, 1, gy_desc.value, cudnn.get_ptr(gy[0]), self.filter_desc.value, cudnn.get_ptr(self.W), self.conv_desc.value, algo, cudnn.get_ptr( workspace), workspace_size, 0, gx_desc.value, cudnn.get_ptr(gx)) # bias backward if self.b is not None: libcudnn.cudnnConvolutionBackwardBias( handle, 1, gy_desc.value, cudnn.get_ptr(gy[0]), 1, self.bias_desc.value, cudnn.get_ptr(self.gb)) # filter backward libcudnn.cudnnConvolutionBackwardFilter( handle, 1, gy_desc.value, cudnn.get_ptr(gy[0]), gx_desc.value, cudnn.get_ptr(x[0]), self.conv_desc.value, 1, self.filter_desc.value, cudnn.get_ptr(self.gW)) else: # Implementation using im2col col = conv.im2col_gpu( gy[0], self.kh, self.kw, self.sy, self.sx, self.ph, self.pw) # TODO(beam2d): Use streams handle = cuda.get_cublas_handle() W_mat = self.W.reshape(out_c, c * self.kh * self.kw) col_mats = col.reshape( n, c * self.kh * self.kw, out_h * out_w) gx_mats = gx.reshape(n, out_c, out_h * out_w) for i in moves.range(n): cuda.culinalg.dot(W_mat, col_mats[i], handle=handle, out=gx_mats[i]) # bias backward if self.gb is not None: # TODO(beam2d): Unify kernels with cuda.using_cumisc(handle): tmp = cuda.cumisc.sum( gy[0].reshape(n * c, h * w), axis=1) tmp = cuda.cumisc.sum(tmp.reshape(n, c), axis=0) self.gb += tmp # filter backward # TODO(beam2d): Use streams gW_mat = self.gW.reshape(out_c, c * self.kh * self.kw) x_mats = x[0].reshape(n, out_c, out_h * out_w) for i in moves.range(n): cuda.culinalg.add_dot( x_mats[i], col_mats[i], gW_mat, transb='T', handle=handle) return gx,
def forward_gpu(self, x): n, c, h, w = x[0].shape out_h = conv.get_conv_outsize(h, self.kh, self.sy, self.ph) out_w = conv.get_conv_outsize(w, self.kw, self.sx, self.pw) out_c = self.W.shape[0] y = cuda.empty((n, out_c, out_h, out_w), dtype=numpy.float32) if cudnn.enabled and self.use_cudnn: handle = cudnn.get_default_handle() x_desc = cudnn.get_tensor_desc(x[0], h, w) y_desc = cudnn.get_tensor_desc(y, out_h, out_w) self.filter_desc = cudnn.get_filter4d_desc(self.W) self.conv_desc = cudnn.get_conv2d_desc( (self.ph, self.pw), (self.sy, self.sx)) if self.b is not None: self.bias_desc = cudnn.get_conv_bias_desc(self.b) algo = libcudnn.cudnnGetConvolutionForwardAlgorithm( handle, x_desc.value, self.filter_desc.value, self.conv_desc.value, y_desc.value, _fwd_pref, self.max_workspace_size) workspace_size = libcudnn.cudnnGetConvolutionForwardWorkspaceSize( handle, x_desc.value, self.filter_desc.value, self.conv_desc.value, y_desc.value, algo).value workspace = cuda.empty( (max(workspace_size // 4, 1),), dtype=numpy.float32) libcudnn.cudnnConvolutionForward( handle, 1, x_desc.value, cudnn.get_ptr(x[0]), self.filter_desc.value, cudnn.get_ptr(self.W), self.conv_desc.value, algo, cudnn.get_ptr( workspace), workspace_size, 0, y_desc.value, cudnn.get_ptr(y)) # TODO(beam2d): Support unshared bias if self.b is not None: libcudnn.cudnnAddTensor( handle, libcudnn.cudnnAddMode['CUDNN_ADD_SAME_C'], 1, self.bias_desc.value, cudnn.get_ptr(self.b), 1, y_desc.value, cudnn.get_ptr(y)) else: # Implementation using im2col self.col = conv.im2col_gpu( x[0], self.kh, self.kw, self.sy, self.sx, self.ph, self.pw) # TODO(beam2d): Use streams handle = cuda.get_cublas_handle() W_mat = self.W.reshape(out_c, c * self.kh * self.kw) col_mats = self.col.reshape( n, c * self.kh * self.kw, out_h * out_w) y_mats = y.reshape(n, out_c, out_h * out_w) for i in moves.range(n): cuda.culinalg.dot(W_mat, col_mats[i], handle=handle, out=y_mats[i]) # TODO(beam2d): Support unshared bias if self.b is not None: cuda.elementwise( 'float* y, const float* b, int c, int hw', 'y[i] += b[i / hw % c]', 'conv_bias_fwd')(y, self.b, out_c, out_h * out_w) return y,