示例#1
0
            def _one_directional_loop(di):
                # di=0, forward GRU
                # di=1, backward GRU
                xs_list = xs_next if di == 0 else reversed(xs_next)
                layer_idx = direction * layer + di
                h = hx[layer_idx]
                h_list = []
                for x in xs_list:
                    batch = x.shape[0]
                    if h.shape[0] > batch:
                        h, h_rest = split_axis.split_axis(h, [batch], axis=0)
                    else:
                        h_rest = None

                    if layer > 0:
                        x = dropout.dropout(x, ratio=dropout_ratio)

                    gru_x = linear.linear(x, xws[layer_idx], xbs[layer_idx])
                    gru_h = linear.linear(h, hws[layer_idx], hbs[layer_idx])

                    W_r_x, W_z_x, W_x = split_axis.split_axis(gru_x, 3, axis=1)
                    U_r_h, U_z_h, U_x = split_axis.split_axis(gru_h, 3, axis=1)

                    r = sigmoid.sigmoid(W_r_x + U_r_h)
                    z = sigmoid.sigmoid(W_z_x + U_z_h)
                    h_bar = tanh.tanh(W_x + r * U_x)
                    h_bar = (1 - z) * h_bar + z * h
                    if h_rest is not None:
                        h = concat.concat([h_bar, h_rest], axis=0)
                    else:
                        h = h_bar
                    h_list.append(h_bar)
                return h, h_list
示例#2
0
文件: lstm.py 项目: prajdabre/chainer
 def set_state(self, c, h):
     h = split_axis.split_axis(h, self.num_layers, 1, True)
     c = split_axis.split_axis(c, self.num_layers, 1, True)
     for layer, c, h in six.moves.zip(self, c, h):
         assert isinstance(h, chainer.Variable)
         assert isinstance(c, chainer.Variable)
         layer.set_state(c, h)
示例#3
0
文件: cell.py 项目: prajdabre/chainer
 def set_state(self, c=None, h=None):
     if c is not None:
         c = split_axis.split_axis(c, self.num_layers, 1, True)
     if h is not None:
         h = split_axis.split_axis(h, self.num_layers, 1, True)
     if 'set_state' in dir(self[0]):
         for layer_id, layer in enumerate(self):
             layer_params = inspect.getargspec(layer.set_state)[0]
             if 'h' in layer_params:
                 if 'c' in layer_params:
                     if h is None:
                         if c is None:
                             layer.set_state(None, None)
                         else:
                             layer.set_state(c[layer_id], None)
                     else:
                         if c is None:
                             layer.set_state(None, h[layer_id])
                         else:
                             layer.set_state(c[layer_id], h[layer_id])
                 else:
                     assert c is None
                     if h is None:
                         layer.set_state(None)
                     else:
                         layer.set_state(h[layer_id])
示例#4
0
    def forward(self, *cshsx):
        """Returns new cell state and output of Child-Sum TreeLSTM.

        Args:
            cshsx (list of :class:`~chainer.Variable`): Variable arguments
                which include all cell vectors and all output vectors of
                variable children, and an input vector.

        Returns:
            tuple of ~chainer.Variable: Returns
            :math:`(c_{new}, h_{new})`, where :math:`c_{new}` represents
            new cell state vector, and :math:`h_{new}` is new output
            vector.

        """

        cs = cshsx[:len(cshsx) // 2]
        hs = cshsx[len(cshsx) // 2:-1]
        x = cshsx[-1]
        assert(len(cshsx) % 2 == 1)
        assert(len(cs) == len(hs))

        if x is None:
            if any(c is not None for c in cs):
                base = [c for c in cs if c is not None][0]
            elif any(h is not None for h in hs):
                base = [h for h in hs if h is not None][0]
            else:
                raise ValueError('All inputs (cs, hs, x) are None.')
            batchsize, dtype = base.shape[0], base.dtype
            x = self.xp.zeros(
                (batchsize, self.in_size), dtype=dtype)

        W_x_in = self.W_x(x)
        W_x_aio_in, W_x_f_in = split_axis.split_axis(
            W_x_in, [3 * self.state_size], axis=1)

        if len(hs) == 0:
            aio_in = W_x_aio_in
            a, i, o = split_axis.split_axis(aio_in, 3, axis=1)
            c = sigmoid.sigmoid(i) * tanh.tanh(a)
            h = sigmoid.sigmoid(o) * tanh.tanh(c)
            return c, h

        hs = self._pad_zero_nodes(
            hs, (x.shape[0], self.state_size), dtype=x.dtype)
        cs = self._pad_zero_nodes(
            cs, (x.shape[0], self.state_size), dtype=x.dtype)

        aio_in = self.W_h_aio(sum(hs)) + W_x_aio_in
        W_h_fs_in = concat.concat(split_axis.split_axis(
            self.W_h_f(concat.concat(hs, axis=0)), len(hs), axis=0),
            axis=1)
        f_in = W_h_fs_in + \
            concat.concat([W_x_f_in] * len(hs), axis=1)
        tree_lstm_in = concat.concat([aio_in, f_in], axis=1)

        return tree_lstm.tree_lstm(*(cs + (tree_lstm_in, )))
示例#5
0
            def _one_directional_loop(di):
                # di=0, forward RNN
                # di=1, backward RNN
                xs_list = xs_next if di == 0 else reversed(xs_next)
                layer_idx = direction * layer + di
                h = hx[layer_idx]
                h_list = []
                for x in xs_list:
                    batch = x.shape[0]
                    if h.shape[0] > batch:
                        h, h_rest = split_axis.split_axis(h, [batch], axis=0)
                    else:
                        h_rest = None

                    if layer > 0:
                        x = dropout.dropout(x, ratio=dropout_ratio)

                    rnn_in = (linear.linear(x, xws[layer_idx],
                                            xbs[layer_idx]) +
                              linear.linear(h, hws[layer_idx], hbs[layer_idx]))
                    if activation == 'tanh':
                        h_bar = tanh.tanh(rnn_in)
                    elif activation == 'relu':
                        h_bar = relu.relu(rnn_in)

                    if h_rest is not None:
                        h = concat.concat([h_bar, h_rest], axis=0)
                    else:
                        h = h_bar
                    h_list.append(h_bar)
                return h, h_list
示例#6
0
    def __call__(self, c, h):
        """Updates the internal state and returns the Cell outputs.

           Remember to treat this Grid cell as if its an LSTM and pass
           ``c`` as well as ``h``. Only parts of ``c`` will be used
           depending on whether there is a LSTM or not.

        Args:
            c (~chainer.Variable): The previous memory information.
            h (~chainer.Variable): The previous state information.

        Returns:
            tuple of ~chainer.Variable: Returns ``(c_new, h_new)``, where
            ``c_new`` represents new cell state, and ``h_new`` is updated
            output. Parts of ``c_new`` will be useless.

        """
        assert h is not None
        assert c is not None
        c = split_axis.split_axis(c, self.out_indices, 1, True)
        h_list = []
        h_curr = None
        for layer_id, layer in enumerate(self):
            layer_params = inspect.getargspec(layer)[0]
            if 'c' in layer_params:
                h_curr = layer(c[layer_id], h)
            else:
                h_curr = (c[layer_id], layer(h))
            h_list.append(h_curr)
        h_new = concat.concat([x[1] for x in h_list], 1)
        c_new = concat.concat([x[0] for x in h_list], 1)
        return c_new, h_new
示例#7
0
def _gru(x, h, c, w, b):
    xw = concat.concat([w[0], w[1], w[2]], axis=0)
    hw = concat.concat([w[3], w[4], w[5]], axis=0)
    xb = concat.concat([b[0], b[1], b[2]], axis=0)
    hb = concat.concat([b[3], b[4], b[5]], axis=0)

    gru_x = linear.linear(x, xw, xb)
    gru_h = linear.linear(h, hw, hb)

    W_r_x, W_z_x, W_x = split_axis.split_axis(gru_x, 3, axis=1)
    U_r_h, U_z_h, U_x = split_axis.split_axis(gru_h, 3, axis=1)

    r = sigmoid.sigmoid(W_r_x + U_r_h)
    z = sigmoid.sigmoid(W_z_x + U_z_h)
    h_bar = tanh.tanh(W_x + r * U_x)
    return (1 - z) * h_bar + z * h, None
示例#8
0
def argmax_crf1d(cost, xs):
    alpha = xs[0]
    alphas = []
    max_inds = []
    for x in xs[1:]:
        batch = x.shape[0]
        if alpha.shape[0] > batch:
            alpha, alpha_rest = split_axis.split_axis(alpha, [batch], axis=0)
            alphas.append(alpha_rest)
        else:
            alphas.append(None)
        b_alpha, b_cost = broadcast.broadcast(alpha[..., None], cost)
        scores = b_alpha + b_cost
        max_ind = minmax.argmax(scores, axis=1)
        max_inds.append(max_ind)
        alpha = minmax.max(scores, axis=1) + x

    inds = minmax.argmax(alpha, axis=1)
    path = [inds.data]
    for m, a in zip(max_inds[::-1], alphas[::-1]):
        inds = select_item.select_item(m, inds)
        if a is not None:
            inds = concat.concat([inds, minmax.argmax(a, axis=1)], axis=0)
        path.append(inds.data)
    path.reverse()

    score = minmax.max(alpha, axis=1)
    for a in alphas[::-1]:
        if a is None:
            continue
        score = concat.concat([score, minmax.max(a, axis=1)], axis=0)

    return score, path
示例#9
0
    def __call__(self, x):
        """Updates the internal state and returns the LSTM outputs.

        Args:
            x (~chainer.Variable): A new batch from the input sequence.

        Returns:
            ~chainer.Variable: Outputs of updated LSTM units.

        """
        lstm_in = self.upward(x)
        if self.h is not None:
            lstm_in += self.lateral(self.h)
        if self.c is None:
            xp = self.xp
            with cuda.get_device_from_id(self._device_id):
                self.c = variable.Variable(
                    xp.zeros((x.shape[0], self.state_size), dtype=x.dtype))
        lstm_in = reshape.reshape(
            lstm_in, (len(lstm_in.data), lstm_in.shape[1] // 4, 4))
        a, i, f, o = split_axis.split_axis(lstm_in, 4, 2)
        a = reshape.reshape(a, (len(a.data), a.shape[1]))
        i = reshape.reshape(i, (len(i.data), i.shape[1]))
        f = reshape.reshape(f, (len(f.data), f.shape[1]))
        o = reshape.reshape(o, (len(o.data), o.shape[1]))
        peep_in_i = self.peep_i(self.c)
        peep_in_f = self.peep_f(self.c)
        a = tanh.tanh(a)
        i = sigmoid.sigmoid(i + peep_in_i)
        f = sigmoid.sigmoid(f + peep_in_f)
        self.c = a * i + f * self.c
        peep_in_o = self.peep_o(self.c)
        o = sigmoid.sigmoid(o + peep_in_o)
        self.h = o * tanh.tanh(self.c)
        return self.h
示例#10
0
    def __call__(self, x):
        """Updates the internal state and returns the LSTM outputs.

        Args:
            x (~chainer.Variable): A new batch from the input sequence.

        Returns:
            ~chainer.Variable: Outputs of updated LSTM units.

        """
        lstm_in = self.upward(x)
        if self.h is not None:
            lstm_in += self.lateral(self.h)
        if self.c is None:
            xp = self.xp
            self.c = variable.Variable(xp.zeros((x.shape[0], self.state_size), dtype=x.dtype), volatile="auto")
        lstm_in = reshape.reshape(lstm_in, (len(lstm_in.data), lstm_in.shape[1] // 4, 4))
        a, i, f, o = split_axis.split_axis(lstm_in, 4, 2)
        a = reshape.reshape(a, (len(a.data), a.shape[1]))
        i = reshape.reshape(i, (len(i.data), i.shape[1]))
        f = reshape.reshape(f, (len(f.data), f.shape[1]))
        o = reshape.reshape(o, (len(o.data), o.shape[1]))
        peep_in_i = self.peep_i(self.c)
        peep_in_f = self.peep_f(self.c)
        a = tanh.tanh(a)
        i = sigmoid.sigmoid(i + peep_in_i)
        f = sigmoid.sigmoid(f + peep_in_f)
        self.c = a * i + f * self.c
        peep_in_o = self.peep_o(self.c)
        o = sigmoid.sigmoid(o + peep_in_o)
        self.h = o * tanh.tanh(self.c)
        return self.h
示例#11
0
def argmax_crf1d(cost, xs):
    """Computes a state that maximizes a joint probability of the given CRF.

    Args:
        cost (:class:`~chainer.Variable` or :ref:`ndarray`):
            A :math:`K \\times K` matrix which holds transition
            cost between two labels, where :math:`K` is the number of labels.
        xs (list of Variable): Input vector for each label.
            ``len(xs)`` denotes the length of the sequence,
            and each :class:`~chainer.Variable` holds a :math:`B \\times K`
            matrix, where :math:`B` is mini-batch size, :math:`K` is the number
            of labels.
            Note that :math:`B`\\ s in all the variables are not necessary
            the same, i.e., it accepts the input sequences with different
            lengths.

    Returns:
        tuple: A tuple of :class:`~chainer.Variable` object ``s`` and a
        :class:`list` ``ps``.
        The shape of ``s`` is ``(B,)``, where ``B`` is the mini-batch size.
        i-th element of ``s``, ``s[i]``, represents log-likelihood of i-th
        data.
        ``ps`` is a list of :ref:`ndarray`, and denotes the state that
        maximizes the point probability.
        ``len(ps)`` is equal to ``len(xs)``, and shape of each ``ps[i]`` is
        the mini-batch size of the corresponding ``xs[i]``. That means,
        ``ps[i].shape == xs[i].shape[0:1]``.
    """
    alpha = xs[0]
    alphas = []
    max_inds = []
    for x in xs[1:]:
        batch = x.shape[0]
        if alpha.shape[0] > batch:
            alpha, alpha_rest = split_axis.split_axis(alpha, [batch], axis=0)
            alphas.append(alpha_rest)
        else:
            alphas.append(None)
        b_alpha, b_cost = broadcast.broadcast(alpha[..., None], cost)
        scores = b_alpha + b_cost
        max_ind = minmax.argmax(scores, axis=1)
        max_inds.append(max_ind)
        alpha = minmax.max(scores, axis=1) + x

    inds = minmax.argmax(alpha, axis=1)
    path = [inds.data]
    for m, a in zip(max_inds[::-1], alphas[::-1]):
        inds = select_item.select_item(m, inds)
        if a is not None:
            inds = concat.concat([inds, minmax.argmax(a, axis=1)], axis=0)
        path.append(inds.data)
    path.reverse()

    score = minmax.max(alpha, axis=1)
    for a in alphas[::-1]:
        if a is None:
            continue
        score = concat.concat([score, minmax.max(a, axis=1)], axis=0)

    return score, path
示例#12
0
文件: crf1d.py 项目: dsanno/chainer
def argmax_crf1d(cost, xs):
    alpha = xs[0]
    alphas = []
    max_inds = []
    for x in xs[1:]:
        batch = x.shape[0]
        if alpha.shape[0] > batch:
            alpha, alpha_rest = split_axis.split_axis(alpha, [batch], axis=0)
            alphas.append(alpha_rest)
        else:
            alphas.append(None)
        b_alpha, b_cost = broadcast.broadcast(alpha[..., None], cost)
        scores = b_alpha + b_cost
        max_ind = minmax.argmax(scores, axis=1)
        max_inds.append(max_ind)
        alpha = minmax.max(scores, axis=1) + x

    inds = minmax.argmax(alpha, axis=1)
    path = [inds.data]
    for m, a in zip(max_inds[::-1], alphas[::-1]):
        inds = select_item.select_item(m, inds)
        if a is not None:
            inds = concat.concat([inds, minmax.argmax(a, axis=1)], axis=0)
        path.append(inds.data)
    path.reverse()

    score = minmax.max(alpha, axis=1)
    for a in alphas[::-1]:
        if a is None:
            continue
        score = concat.concat([score, minmax.max(a, axis=1)], axis=0)

    return score, path
示例#13
0
    def forward(self, x):
        """Updates the internal state and returns the LSTM outputs.

        Args:
            x (~chainer.Variable): A new batch from the input sequence.

        Returns:
            ~chainer.Variable: Outputs of updated LSTM units.

        """
        lstm_in = self.upward(x)
        if self.h is not None:
            lstm_in += self.lateral(self.h)
        if self.c is None:
            xp = self.xp
            with chainer.using_device(self.device):
                self.c = variable.Variable(
                    xp.zeros((len(x), self.state_size), dtype=x.dtype))
        lstm_in = reshape.reshape(
            lstm_in, (len(lstm_in), lstm_in.shape[1] // 4, 4))
        a, i, f, o = split_axis.split_axis(lstm_in, 4, 2)
        a = reshape.reshape(a, a.shape[:2])
        i = reshape.reshape(i, i.shape[:2])
        f = reshape.reshape(f, f.shape[:2])
        o = reshape.reshape(o, o.shape[:2])
        peep_in_i = self.peep_i(self.c)
        peep_in_f = self.peep_f(self.c)
        a = tanh.tanh(a)
        i = sigmoid.sigmoid(i + peep_in_i)
        f = sigmoid.sigmoid(f + peep_in_f)
        self.c = a * i + f * self.c
        peep_in_o = self.peep_o(self.c)
        o = sigmoid.sigmoid(o + peep_in_o)
        self.h = o * tanh.tanh(self.c)
        return self.h
示例#14
0
def _gru(x, h, c, w, b):
    xw = concat.concat([w[0], w[1], w[2]], axis=0)
    hw = concat.concat([w[3], w[4], w[5]], axis=0)
    xb = concat.concat([b[0], b[1], b[2]], axis=0)
    hb = concat.concat([b[3], b[4], b[5]], axis=0)

    gru_x = linear.linear(x, xw, xb)
    gru_h = linear.linear(h, hw, hb)

    W_r_x, W_z_x, W_x = split_axis.split_axis(gru_x, 3, axis=1)
    U_r_h, U_z_h, U_x = split_axis.split_axis(gru_h, 3, axis=1)

    r = sigmoid.sigmoid(W_r_x + U_r_h)
    z = sigmoid.sigmoid(W_z_x + U_z_h)
    h_bar = tanh.tanh(W_x + r * U_x)
    return (1 - z) * h_bar + z * h, None
示例#15
0
文件: crf1d.py 项目: Fhrozen/chainer
def argmax_crf1d(cost, xs):
    """Computes a state that maximizes a joint probability of the given CRF.

    Args:
        cost (Variable): A :math:`K \\times K` matrix which holds transition
            cost between two labels, where :math:`K` is the number of labels.
        xs (list of Variable): Input vector for each label.
            ``len(xs)`` denotes the length of the sequence,
            and each :class:`~chainer.Variable` holds a :math:`B \\times K`
            matrix, where :math:`B` is mini-batch size, :math:`K` is the number
            of labels.
            Note that :math:`B`\\ s in all the variables are not necessary
            the same, i.e., it accepts the input sequences with different
            lengths.

    Returns:
        tuple: A tuple of :class:`~chainer.Variable` object ``s`` and a
        :class:`list` ``ps``.
        The shape of ``s`` is ``(B,)``, where ``B`` is the mini-batch size.
        i-th element of ``s``, ``s[i]``, represents log-likelihood of i-th
        data.
        ``ps`` is a list of :class:`numpy.ndarray` or
        :class:`cupy.ndarray`, and denotes the state that maximizes the
        point probability.
        ``len(ps)`` is equal to ``len(xs)``, and shape of each ``ps[i]`` is
        the mini-batch size of the corresponding ``xs[i]``. That means,
        ``ps[i].shape == xs[i].shape[0:1]``.
    """
    alpha = xs[0]
    alphas = []
    max_inds = []
    for x in xs[1:]:
        batch = x.shape[0]
        if alpha.shape[0] > batch:
            alpha, alpha_rest = split_axis.split_axis(alpha, [batch], axis=0)
            alphas.append(alpha_rest)
        else:
            alphas.append(None)
        b_alpha, b_cost = broadcast.broadcast(alpha[..., None], cost)
        scores = b_alpha + b_cost
        max_ind = minmax.argmax(scores, axis=1)
        max_inds.append(max_ind)
        alpha = minmax.max(scores, axis=1) + x

    inds = minmax.argmax(alpha, axis=1)
    path = [inds.data]
    for m, a in zip(max_inds[::-1], alphas[::-1]):
        inds = select_item.select_item(m, inds)
        if a is not None:
            inds = concat.concat([inds, minmax.argmax(a, axis=1)], axis=0)
        path.append(inds.data)
    path.reverse()

    score = minmax.max(alpha, axis=1)
    for a in alphas[::-1]:
        if a is None:
            continue
        score = concat.concat([score, minmax.max(a, axis=1)], axis=0)

    return score, path
示例#16
0
            def _one_directional_loop(di):
                # di=0, forward RNN
                # di=1, backward RNN
                xs_list = xs_next if di == 0 else reversed(xs_next)
                layer_idx = direction * layer + di
                h = hx[layer_idx]
                h_list = []
                for x in xs_list:
                    batch = x.shape[0]
                    if h.shape[0] > batch:
                        h, h_rest = split_axis.split_axis(h, [batch], axis=0)
                    else:
                        h_rest = None

                    if layer > 0:
                        x = dropout.dropout(x, ratio=dropout_ratio)

                    rnn_in = (
                        linear.linear(x, xws[layer_idx], xbs[layer_idx]) +
                        linear.linear(h, hws[layer_idx], hbs[layer_idx]))
                    if activation == 'tanh':
                        h_bar = tanh.tanh(rnn_in)
                    elif activation == 'relu':
                        h_bar = relu.relu(rnn_in)

                    if h_rest is not None:
                        h = concat.concat([h_bar, h_rest], axis=0)
                    else:
                        h = h_bar
                    h_list.append(h_bar)
                return h, h_list
示例#17
0
 def __call__(self, x):
     xs = split_axis.split_axis(x, x.data.shape[1], 1)
     ret = []
     for x in xs:
         for l in self:
             x = l(x)
         ret.append(x)
     return ret
示例#18
0
    def __call__(self, h, x):
        # We compute r_x, z_x and h_x simultaneously
        r_z_h_x = self.W_r_z_h(x)
        r_x, z_x, h_x = split_axis.split_axis(
            r_z_h_x, (self.n_units, self.n_units * 2), axis=1)

        # We compute r_h and z_h simultaneously
        r_z_h = self.U_r_z(h)
        r_h, z_h = split_axis.split_axis(r_z_h, (self.n_units,), axis=1)

        # finally we compute the output using the optimized functions
        return compute_output_GRU(
            z_x,
            z_h,
            h_x,
            h,
            self.U(sigmoid_a_plus_b_multiplied_by_c(r_x, r_h, h))
        )
示例#19
0
def _one_directional_loop(f, xs, h, c, w, b):
    h_list = []
    for x in xs:
        batch = len(x)
        need_split = len(h) > batch
        if need_split:
            h, h_rest = split_axis.split_axis(h, [batch], axis=0)
            if c is not None:
                c, c_rest = split_axis.split_axis(c, [batch], axis=0)

        h, c = f(x, h, c, w, b)
        h_list.append(h)

        if need_split:
            h = concat.concat([h, h_rest], axis=0)
            if c is not None:
                c = concat.concat([c, c_rest], axis=0)
    return h, c, h_list
示例#20
0
def _one_directional_loop(f, xs, h, c, w, b):
    h_list = []
    for x in xs:
        batch = len(x)
        need_split = len(h) > batch
        if need_split:
            h, h_rest = split_axis.split_axis(h, [batch], axis=0)
            if c is not None:
                c, c_rest = split_axis.split_axis(c, [batch], axis=0)

        h, c = f(x, h, c, w, b)
        h_list.append(h)

        if need_split:
            h = concat.concat([h, h_rest], axis=0)
            if c is not None:
                c = concat.concat([c, c_rest], axis=0)
    return h, c, h_list
示例#21
0
            def _one_directional_loop(di):
                # di=0, forward LSTM
                # di=1, backward LSTM
                h_list = []
                c_list = []
                layer_idx = direction * layer + di
                h = hx[layer_idx]
                c = cx[layer_idx]
                if di == 0:
                    xs_list = xs_next
                else:
                    xs_list = reversed(xs_next)
                counter = 0
                for x in xs_list:
                    counter += 1
                    batch = x.shape[0]
                    if h.shape[0] > batch:
                        h, h_rest = split_axis.split_axis(h, [batch], axis=0)
                        c, c_rest = split_axis.split_axis(c, [batch], axis=0)
                    else:
                        h_rest = None
                        c_rest = None

                    if layer != 0:
                        x = dropout.dropout(x, ratio=dropout_ratio)
                    if counter == 4:
                        lstm_in = linear.linear(x, xws[layer_idx],
                                                xbs[layer_idx])
                    else:
                        lstm_in = linear.linear(
                            x, xws[layer_idx], xbs[layer_idx]) + linear.linear(
                                h, hws[layer_idx], hbs[layer_idx])

                    c_bar, h_bar = lstm.lstm(c, lstm_in)
                    if h_rest is not None:
                        h = concat.concat([h_bar, h_rest], axis=0)
                        c = concat.concat([c_bar, c_rest], axis=0)
                    else:
                        h = h_bar
                        c = c_bar
                    h_list.append(h_bar)
                    c_list.append(c_bar)
                return h, c, h_list, c_list
示例#22
0
 def __call__(self, x, train=True):
     x = reshape.reshape(x, (len(x.data), 1) + x.data.shape[1:])
     x = self.convolution(x, train)
     xs = split_axis.split_axis(x, x.data.shape[2], 2)
     for x in xs:
         x.data = self.xp.ascontiguousarray(x.data)
     for r in self.recurrent:
         r.reset_state()
     xs = self.recurrent(xs, train)
     xs = self._linear(xs, train)
     return xs
示例#23
0
 def __call__(self, x):
     x = self.embed(x)
     xs = split_axis.split_axis(x, x.data.shape[1], 1)
     ret = []
     for x in xs:
         x = self.rnn1(x)
         x = self.rnn2(x)
         x = self.linear(x)
         x = reshape.reshape(x, x.data.shape + (-1, ))
         ret.append(x)
     ret = concat.concat(ret, axis=2)
     return ret
示例#24
0
    def forward(self, x, y):
        """Updates the internal state and returns the LSTM outputs.

        Args:
            x (~chainer.Variable): A new batch from the input sequence.

        Returns:
            ~chainer.Variable: Outputs of updated LSTM units.

        """
        if self.upward.has_uninitialized_params:
            in_size = x.size // x.shape[0]
            self.upward._initialize_params(in_size)
            self._initialize_params()

        batch = x.shape[0]
        lstm_in = self.upward(x)

        if self.h is not None:
            h_size = self.h.shape[0]
            if batch == 0:
                h_rest = self.h
            elif h_size < batch:
                msg = ('The batch size of x must be equal to or less than the '
                       'size of the previous state h.')
                raise TypeError(msg)
            elif h_size > batch:
                h_update, h_rest = split_axis.split_axis(
                    self.h, [batch], axis=0)
                lstm_in += self.lateral(h_update)
            else:
                lstm_in += self.lateral(self.h)
        if self.c is None:
            xp = self.xp
            self.c = variable.Variable(
                xp.zeros((batch, self.state_size), dtype=x.dtype),
                volatile='auto')

        r = reshape.reshape(lstm_in, (len(lstm_in.data), lstm_in.data.shape[1] // 4, 4) + lstm_in.data.shape[2:])
        a, i, f, o = [r[:, :, i] for i in range(4)]

        # self.c, y = lstm.lstm(self.c,lstm_in)

        a = tanh.tanh(a)  # tanh.tanh(a)
        i = sigmoid.sigmoid(i)
        f = sigmoid.sigmoid(f)
        o = sigmoid.sigmoid(o)

        self.c = a * i + f * self.c + tanh(self.w_y(y))
        self.h = o * tanh.tanh(self.c)

        return self.h
示例#25
0
def separate(x, axis=0):
    """Separates an array along a given axis.

    This function separates an array along a given axis. For example, shape of
    an array is ``(2, 3, 4)``. When it separates the array with ``axis=1``, it
    returns three ``(2, 4)`` arrays.

    This function is an inverse of :func:`chainer.functions.stack`.

    Args:
        x (:class:`~chainer.Variable` or :class:`numpy.ndarray` or \
        :class:`cupy.ndarray`):
            Variable to be separated.
            A :math:`(s_1, s_2, ..., s_N)` -shaped float array.
        axis (int): Axis along which variables are separated.

    Returns:
        tuple of chainer.Variable: Output variables.

    .. seealso:: :func:`chainer.functions.stack`

    .. admonition:: Example

        >>> x = np.arange(6).reshape((2, 3)).astype('f')
        >>> x
        array([[ 0.,  1.,  2.],
               [ 3.,  4.,  5.]], dtype=float32)
        >>> x.shape
        (2, 3)
        >>> y = F.separate(x) # split along axis=0
        >>> type(y)
        <class 'tuple'>
        >>> len(y)
        2
        >>> y[0].shape
        (3,)
        >>> y[0].data
        array([ 0.,  1.,  2.], dtype=float32)
        >>> y = F.separate(x, axis=1)
        >>> len(y)
        3
        >>> y[0].shape
        (2,)
        >>> y[0].data
        array([ 0.,  3.], dtype=float32)

    """
    shape = list(x.shape)
    del shape[axis]
    ys = split_axis.split_axis(x, x.shape[axis], axis, force_tuple=True)
    return tuple(reshape.reshape(y, shape) for y in ys)
示例#26
0
def separate(x, axis=0):
    """Separates an array along a given axis.

    This function separates an array along a given axis. For example, shape of
    an array is ``(2, 3, 4)``. When it separates the array with ``axis=1``, it
    returns three ``(2, 4)`` arrays.

    This function is an inverse of :func:`chainer.functions.stack`.

    Args:
        x (:class:`~chainer.Variable` or :class:`numpy.ndarray` or \
        :class:`cupy.ndarray`):
            Variable to be separated.
            A :math:`(s_1, s_2, ..., s_N)` -shaped float array.
        axis (int): Axis along which variables are separated.

    Returns:
        tuple of chainer.Variable: Output variables.

    .. seealso:: :func:`chainer.functions.stack`

    .. admonition:: Example

        >>> x = np.arange(6).reshape((2, 3)).astype('f')
        >>> x
        array([[ 0.,  1.,  2.],
               [ 3.,  4.,  5.]], dtype=float32)
        >>> x.shape
        (2, 3)
        >>> y = F.separate(x) # split along axis=0
        >>> isinstance(y, tuple)
        True
        >>> len(y)
        2
        >>> y[0].shape
        (3,)
        >>> y[0].data
        array([ 0.,  1.,  2.], dtype=float32)
        >>> y = F.separate(x, axis=1)
        >>> len(y)
        3
        >>> y[0].shape
        (2,)
        >>> y[0].data
        array([ 0.,  3.], dtype=float32)

    """
    shape = list(x.shape)
    del shape[axis]
    ys = split_axis.split_axis(x, x.shape[axis], axis, force_tuple=True)
    return tuple(reshape.reshape(y, shape) for y in ys)
示例#27
0
            def _one_directional_loop(di):
                # di=0, forward LSTM
                # di=1, backward LSTM
                h_list = []
                c_list = []
                layer_idx = direction * layer + di
                h = hx[layer_idx]
                c = cx[layer_idx]
                if di == 0:
                    xs_list = xs_next
                else:
                    xs_list = reversed(xs_next)
                for x in xs_list:
                    batch = x.shape[0]
                    if h.shape[0] > batch:
                        h, h_rest = split_axis.split_axis(h, [batch], axis=0)
                        c, c_rest = split_axis.split_axis(c, [batch], axis=0)
                    else:
                        h_rest = None
                        c_rest = None

                    if layer != 0:
                        x = dropout.dropout(x, ratio=dropout_ratio,
                                            train=train)
                    lstm_in = linear.linear(x, xws[layer_idx],
                                            xbs[layer_idx]) + \
                        linear.linear(h, hws[layer_idx], hbs[layer_idx])

                    c_bar, h_bar = lstm.lstm(c, lstm_in)
                    if h_rest is not None:
                        h = concat.concat([h_bar, h_rest], axis=0)
                        c = concat.concat([c_bar, c_rest], axis=0)
                    else:
                        h = h_bar
                        c = c_bar
                    h_list.append(h_bar)
                    c_list.append(c_bar)
                return h, c, h_list, c_list
示例#28
0
 def __call__(self, x):
     x = self.embed(x)
     xs = split_axis.split_axis(x, x.data.shape[1], 1)
     ret = []
     for x in xs:
         for l in self.rnns:
             x = l(x)
             x = dropout.dropout(x, 0.25, self.train)
         for l in self.linears:
             x = l(x)
         x = reshape.reshape(x, x.data.shape + (-1, ))
         ret.append(x)
     ret = concat.concat(ret, axis=2)
     return ret
示例#29
0
    def __call__(self, x):
        """Updates the internal state and returns the LSTM outputs.
        Args:
            x (~chainer.Variable): A new batch from the input sequence.
        Returns:
            ~chainer.Variable: Outputs of updated LSTM units.
        """
        if self.upward.has_uninitialized_params:
            in_size = x.size // x.shape[0]
            self.upward._initialize_params(in_size)
            self._initialize_params()

        batch = x.shape[0]
        lstm_in = self.upward(x)
        h_rest = None
        if self.h is not None:
            h_size = self.h.shape[0]
            if batch == 0:
                h_rest = self.h
            elif h_size < batch:
                msg = ('The batch size of x must be equal to or less than the '
                       'size of the previous state h.')
                raise TypeError(msg)
            elif h_size > batch:
                h_update, h_rest = split_axis.split_axis(self.h, [batch],
                                                         axis=0)
                lstm_in += self.lateral(h_update)
            else:
                lstm_in += self.lateral(self.h)
        if self.c is None:
            xp = self.xp
            self.c = variable.Variable(xp.zeros((batch, self.state_size),
                                                dtype=x.dtype),
                                       volatile='auto')
        # self.c, y = lstm.lstm(self.c, lstm_in)

        c, y = lstm.lstm(self.c, lstm_in)
        enable = (x.data != -1)
        self.c = where(enable, c, self.c)
        if self.h is not None:
            y = where(enable, y, self.h)

        if h_rest is None:
            self.h = y
        elif len(y.data) == 0:
            self.h = h_rest
        else:
            self.h = concat.concat([y, h_rest], axis=0)

        return y
示例#30
0
    def __call__(self, x):
        """Updates the internal state and returns the LSTM outputs.

        Args:
            x (~chainer.Variable): A new batch from the input sequence.

        Returns:
            ~chainer.Variable: Outputs of updated LSTM units.

        """
        if self.upward.has_uninitialized_params:
            with cuda.get_device_from_id(self._device_id):
                in_size = x.size // x.shape[0]
                self.upward._initialize_params(in_size)
                self._initialize_params()

        batch = x.shape[0]
        lstm_in = self.upward(x)
        h_rest = None
        if self.h is not None:
            h_size = self.h.shape[0]
            if batch == 0:
                h_rest = self.h
            elif h_size < batch:
                msg = ('The batch size of x must be equal to or less than'
                       'the size of the previous state h.')
                raise TypeError(msg)
            elif h_size > batch:
                h_update, h_rest = split_axis.split_axis(
                    self.h, [batch], axis=0)
                lstm_in += self.lateral(h_update)
            else:
                lstm_in += self.lateral(self.h)
        if self.c is None:
            xp = self.xp
            with cuda.get_device_from_id(self._device_id):
                self.c = variable.Variable(
                    xp.zeros((batch, self.state_size), dtype=x.dtype),
                    volatile='auto')
        self.c, y = lstm.lstm(self.c, lstm_in)

        if h_rest is None:
            self.h = y
        elif len(y.data) == 0:
            self.h = h_rest
        else:
            self.h = concat.concat([y, h_rest], axis=0)

        return y
    def __call__(self, x):
        """Updates the internal state and returns the LSTM outputs.

        Args:
            x (~chainer.Variable): A new batch from the input sequence.

        Returns:
            ~chainer.Variable: Outputs of updated LSTM units.

        """
        if self.upward.W.data is None:
            with cuda.get_device_from_id(self._device_id):
                in_size = functools.reduce(operator.mul, x.shape[1:], 1)
                self.upward._initialize_params(in_size)
                self._initialize_params()

        batch = x.shape[0]
        lstm_in = self.upward(x)
        h_rest = None
        if self.h is not None:
            h_size = self.h.shape[0]
            if batch == 0:
                h_rest = self.h
            elif h_size < batch:
                msg = ('The batch size of x must be equal to or less than'
                       'the size of the previous state h.')
                raise TypeError(msg)
            elif h_size > batch:
                h_update, h_rest = split_axis.split_axis(self.h, [batch],
                                                         axis=0)
                lstm_in += self.lateral(h_update)
            else:
                lstm_in += self.lateral(self.h)
        if self.c is None:
            xp = self.xp
            with cuda.get_device_from_id(self._device_id):
                self.c = variable.Variable(
                    xp.zeros((batch, self.state_size), dtype=x.dtype))
        self.c, y = lstm.lstm(self.c, lstm_in)

        if h_rest is None:
            self.h = y
        elif len(y.data) == 0:
            self.h = h_rest
        else:
            self.h = concat.concat([y, h_rest], axis=0)

        return y
示例#32
0
文件: lstm.py 项目: asi1024/chainer
    def forward(self, x):
        """Updates the internal state and returns the LSTM outputs.

        Args:
            x (~chainer.Variable): A new batch from the input sequence.

        Returns:
            ~chainer.Variable: Outputs of updated LSTM units.

        """
        if self.upward.W.array is None:
            with chainer.using_device(self.device):
                in_size = utils.size_of_shape(x.shape[1:])
                self.upward._initialize_params(in_size)
                self._initialize_params()

        batch = x.shape[0]
        lstm_in = self.upward(x)
        h_rest = None
        if self.h is not None:
            h_size = self.h.shape[0]
            if batch == 0:
                h_rest = self.h
            elif h_size < batch:
                msg = ('The batch size of x must be equal to or less than'
                       'the size of the previous state h.')
                raise TypeError(msg)
            elif h_size > batch:
                h_update, h_rest = split_axis.split_axis(
                    self.h, [batch], axis=0)
                lstm_in += self.lateral(h_update)
            else:
                lstm_in += self.lateral(self.h)
        if self.c is None:
            with chainer.using_device(self.device):
                self.c = variable.Variable(
                    self.xp.zeros((batch, self.state_size), dtype=x.dtype))
        self.c, y = lstm.lstm(self.c, lstm_in)

        if h_rest is None:
            self.h = y
        elif len(y.array) == 0:
            self.h = h_rest
        else:
            self.h = concat.concat([y, h_rest], axis=0)

        return y
示例#33
0
    def __call__(self, x):
        """Updates the internal state and returns the LSTM outputs.

        Args:
            x (~chainer.Variable): A new batch from the input sequence.

        Returns:
            ~chainer.Variable: Outputs of updated LSTM units.

        """
        lstm_in = self.upward(x)
        if self.h is not None:
            lstm_in += self.lateral(self.h)
        else:
            xp = self.xp
            with cuda.get_device(self._device_id):
                self.h = variable.Variable(
                    xp.zeros((len(x.data), self.state_size),
                             dtype=x.data.dtype),
                    volatile='auto')
        if self.c is None:
            xp = self.xp
            with cuda.get_device(self._device_id):
                self.c = variable.Variable(
                    xp.zeros((len(x.data), self.state_size),
                             dtype=x.data.dtype),
                    volatile='auto')

        lstm_in = reshape.reshape(lstm_in, (len(lstm_in.data),
                                            lstm_in.data.shape[1] // 4,
                                            4))

        a, i, f, o = split_axis.split_axis(lstm_in, 4, 2)
        a = reshape.reshape(a, (len(a.data), self.state_size))
        i = reshape.reshape(i, (len(i.data), self.state_size))
        f = reshape.reshape(f, (len(f.data), self.state_size))
        o = reshape.reshape(o, (len(o.data), self.state_size))

        c_tmp = tanh.tanh(a) * sigmoid.sigmoid(i) + sigmoid.sigmoid(f) * self.c
        self.c = zoneout.zoneout(self.c, c_tmp, self.c_ratio, self.train)
        self.h = zoneout.zoneout(self.h,
                                 sigmoid.sigmoid(o) * tanh.tanh(c_tmp),
                                 self.h_ratio, self.train)
        return self.h
示例#34
0
文件: lstm.py 项目: prajdabre/chainer
    def __call__(self, h, x):
        """Updates the internal state and returns the  LSTM outputs.

        Args:
            x (~chainer.Variable): A new batch from the input sequence.
            h (~chainer.Variable): The list of the previous cell outputs.

        Returns:
            ~chainer.Variable: A list of the outputs (h) of the updated
                LSTM units over all the layers.

        """
        h_list = []
        h = split_axis.split_axis(h, self.num_layers, 1, True)
        h_curr = x
        for layer, h in six.moves.zip(self, h):
            h_curr = layer(h, h_curr)
            h_list.append(h_curr)
        return concat.concat(h_list, 1)
示例#35
0
    def forward(self, x):
        """Updates the internal state and returns the LSTM outputs.

        Args:
            x (~chainer.Variable): A new batch from the input sequence.

        Returns:
            ~chainer.Variable: Outputs of updated LSTM units.

        """
        if self.upward.W.array is None:
            with chainer.using_device(self.device):
                in_size = utils.size_of_shape(x.shape[1:])
                self.upward._initialize_params(in_size)
                self._initialize_params()

        batch = x.shape[0]
        lstm_in = x
        # lstm_in = self.upward(x)
        h_rest = None
        if self.h is not None:
            h_size = self.h.shape[0]
            if batch == 0:
                h_rest = self.h
            elif h_size < batch:
                msg = ('The batch size of x must be equal to or less than'
                       'the size of the previous state h.')
                raise TypeError(msg)
            elif h_size > batch:
                h_update, h_rest = split_axis.split_axis(
                    self.h, [batch], axis=0)
                lstm_in += self.lateral(h_update)
            else:
                lstm_in += self.lateral(self.h)
        if self.c is None:
            with chainer.using_device(self.device):
                self.c = variable.Variable(
                    self.xp.zeros((batch, self.state_size), dtype=x.dtype))
        self.c, = lstm(self.c, lstm_in)

        return self.c
示例#36
0
    def __call__(self, batchsize):
        """....
        
        Args:
            eps (~chainer.Variable): 
                a wsize-length vector whose elements are drawn from 
                normal distribution (mean = 0, std = 1).
            batchsize  (~chainer.Variable): 
                (batch size)  *  (number of truncated backward gradient calculation for a training dataset)

        Returns:
            ~chainer.Variable: Output of the linear layer.

        """
        """
        self.m_hat  = reshape.reshape(sum.sum(self.M)/self.M.data.shape[0], (1,1))
        M, m_hat = broadcast.broadcast(self.M, self.m_hat)
        self.s2_hat = sum.sum(self.S2 + (M - m_hat)*(M - m_hat))/self.M.data.shape[0]
        
        print('m_hat.data {}'.format(self.m_hat.data))
        print('self.s2_hat.data {}'.format(self.s2_hat.data))
        print('self.S2.data {}'.format(self.S2.data))
        print('self.M.data {}'.format(self.M.data))
        print('------------------')
        """

        self.fWb, loss = adaptive_weight_noise(batchsize, self.M, self.logS2,
                                               self.use_weight_noise)

        if self.nobias:
            return reshape.reshape(self.fWb,
                                   (self.out_size, self.in_size)), loss
        else:
            self.fW, self.fb = split_axis.split_axis(
                self.fWb,
                numpy.asarray([(self.in_size - 1) * self.out_size]),
                axis=0)
            return reshape.reshape(
                self.fW, (self.out_size, self.in_size - 1)), self.fb, loss
示例#37
0
def separate(x, axis=0):
    """Separates an array along a given axis.

    This function separates an array along a given axis. For example, shape of
    an array is ``(2, 3, 4)``. When it separates the array with ``axis=1``, it
    returns three ``(2, 4)`` arrays.

    This function is an inverse of :func:`chainer.functions.stack`.

    Args:
        x (chainer.Variable): Variable to be separated.
        axis (int): Axis along which variables are separated.

    Returns:
        tuple of chainer.Variable: Output variables.

    .. seealso:: :func:`chainer.functions.stack`

    """
    shape = list(x.shape)
    del shape[axis]
    ys = split_axis.split_axis(x, x.shape[axis], axis, force_tuple=True)
    return tuple(reshape.reshape(y, shape) for y in ys)
示例#38
0
    def __call__(self, c, h):
        """Updates the internal state and returns the Cell outputs.

        Args:
            c (~chainer.Variable): The previous memory of the Grid cell.
            h (~chainer.Variable): The batched form of the previous state.

        Returns:
            tuple of ~chainer.Variable: Returns ``(c_new, h_new)``, where
            ``c_new`` represents new cell state, and ``h_new`` is updated
            output of LSTM units.

        """
        assert h is not None
        assert c is not None
        c = split_axis.split_axis(c, self.out_indices, 1, True)
        h_list = []
        h_curr = None
        for layer_id, layer in enumerate(self):
            h_curr = layer(c[layer_id], h)
            h_list.append(h_curr)
        h_new = concat.concat([x[1] for x in h_list], 1)
        c_new = concat.concat([x[0] for x in h_list], 1)
        return c_new, h_new
示例#39
0
    def __call__(self, x,Whx,Wmx,Wmh,Whm):
        """Updates the internal state and returns the LSTM outputs.
        Args:
            x (~chainer.Variable): A new batch from the input sequence.
        Returns:
            ~chainer.Variable: Outputs of updated LSTM units.
        """
    #    if self.upward.has_uninitialized_params:
    #        in_size = x.size // x.shape[0]
    #        self.upward._initialize_params(in_size)
    #        self._initialize_params()
    #    if self.upward2.has_uninitialized_params:
    #        in_size = x.size // x.shape[0]
    #        self.upward2._initialize_params(in_size)
    #        self._initialize_params()

        batch = x.shape[0]
    #    Whx = self.upward()

    #    Wmx = self.upward2()

        factor_in = F.linear(x,Wmx)
        lstm_in = F.linear(x,Whx,self.b)

        h_rest = None
        if self.h is not None:
            h_size = self.h.shape[0]
            if batch == 0:
                h_rest = self.h
            elif h_size < batch:
                msg = ('The batch size of x must be equal to or less than the '
                       'size of the previous state h.')
                raise TypeError(msg)
            elif h_size > batch:
                h_update, h_rest = split_axis.split_axis(
                    self.h, [batch], axis=0)
    #            Wmh = self.lateral1()

                mult_in = F.linear(h_update,Wmh)

                mult_out = mult_in*factor_in
        #        Whm = self.lateral2()
                lstm_in += F.linear(mult_out,Whm)

            else:
    #            Wmh = self.lateral1()

                mult_in = F.linear(self.h,Wmh)

                mult_out = mult_in*factor_in
        #        Whm = self.lateral2()
                lstm_in += F.linear(mult_out,Whm)

        if self.c is None:
            xp = self.xp
            self.c = variable.Variable(xp.zeros((batch, self.state_size), dtype=x.dtype),volatile='auto')
        self.c, y = lstm.lstm(self.c, lstm_in)

        if h_rest is None:
            self.h = y
        elif len(y.data) == 0:
            self.h = h_rest
        else:
            self.h = concat.concat([y, h_rest], axis=0)

        return y
示例#40
0
def n_step_lstm_base(
        n_layers, dropout_ratio, hx, cx, ws, bs, xs, train, use_cudnn,
        use_bi_direction):
    """Base function for Stack LSTM/BiLSTM functions.

    This function is used at :func:`chainer.functions.n_step_lstm` and
    :func:`chainer.functions.n_step_bilstm`.
    This function's behavior depends on following arguments,
    ``activation`` and ``use_bi_direction``.

    Args:
        n_layers(int): Number of layers.
        dropout_ratio(float): Dropout ratio.
        hx (chainer.Variable): Variable holding stacked hidden states.
            Its shape is ``(S, B, N)`` where ``S`` is number of layers and is
            equal to ``n_layers``, ``B`` is mini-batch size, and ``N`` is
            dimention of hidden units.
        cx (chainer.Variable): Variable holding stacked cell states.
            It has the same shape as ``hx``.
        ws (list of list of chainer.Variable): Weight matrices. ``ws[i]``
            represents weights for i-th layer.
            Each ``ws[i]`` is a list containing eight matrices.
            ``ws[i][j]`` is corresponding with ``W_j`` in the equation.
            Only ``ws[0][j]`` where ``0 <= j < 4`` is ``(I, N)`` shape as they
            are multiplied with input variables. All other matrices has
            ``(N, N)`` shape.
        bs (list of list of chainer.Variable): Bias vectors. ``bs[i]``
            represnents biases for i-th layer.
            Each ``bs[i]`` is a list containing eight vectors.
            ``bs[i][j]`` is corresponding with ``b_j`` in the equation.
            Shape of each matrix is ``(N,)`` where ``N`` is dimention of
            hidden units.
        xs (list of chainer.Variable): A list of :class:`~chainer.Variable`
            holding input values. Each element ``xs[t]`` holds input value
            for time ``t``. Its shape is ``(B_t, I)``, where ``B_t`` is
            mini-batch size for time ``t``, and ``I`` is size of input units.
            Note that this functions supports variable length sequences.
            When sequneces has different lengths, sort sequences in descending
            order by length, and transpose the sorted sequence.
            :func:`~chainer.functions.transpose_sequence` transpose a list
            of :func:`~chainer.Variable` holding sequence.
            So ``xs`` needs to satisfy
            ``xs[t].shape[0] >= xs[t + 1].shape[0]``.
        train (bool): If ``True``, this function executes dropout.
        use_cudnn (bool): If ``True``, this function uses cuDNN if available.
        use_bi_direction (bool): If ``True``, this function uses Bi-directional
            LSTM.

    Returns:
        tuple: This functions returns a tuple concaining three elements,
            ``hy``, ``cy`` and ``ys``.
            - ``hy`` is an updated hidden states whose shape is same as ``hx``.
            - ``cy`` is an updated cell states whose shape is same as ``cx``.
            - ``ys`` is a list of :class:`~chainer.Variable` . Each element
              ``ys[t]`` holds hidden states of the last layer corresponding
              to an input ``xs[t]``. Its shape is ``(B_t, N)`` where ``B_t`` is
              mini-batch size for time ``t``, and ``N`` is size of hidden
              units. Note that ``B_t`` is the same value as ``xs[t]``.

    .. seealso::

       :func:`chainer.functions.n_step_lstm`
       :func:`chainer.functions.n_step_bilstm`

    """

    xp = cuda.get_array_module(hx, hx.data)

    if use_cudnn and xp is not numpy and cuda.cudnn_enabled and \
       _cudnn_version >= 5000:
        states = get_random_state().create_dropout_states(dropout_ratio)
        # flatten all input variables
        inputs = tuple(itertools.chain(
            (hx, cx),
            itertools.chain.from_iterable(ws),
            itertools.chain.from_iterable(bs),
            xs))
        if use_bi_direction:
            rnn = NStepBiLSTM(n_layers, states, train=train)
        else:
            rnn = NStepLSTM(n_layers, states, train=train)

        ret = rnn(*inputs)
        hy, cy = ret[:2]
        ys = ret[2:]
        return hy, cy, ys

    else:
        direction = 2 if use_bi_direction else 1
        split_size = n_layers * direction
        hx = split_axis.split_axis(hx, split_size, axis=0, force_tuple=True)
        hx = [reshape.reshape(h, h.shape[1:]) for h in hx]
        cx = split_axis.split_axis(cx, split_size, axis=0, force_tuple=True)
        cx = [reshape.reshape(c, c.shape[1:]) for c in cx]

        xws = [_stack_weight([w[2], w[0], w[1], w[3]]) for w in ws]
        hws = [_stack_weight([w[6], w[4], w[5], w[7]]) for w in ws]
        xbs = [_stack_weight([b[2], b[0], b[1], b[3]]) for b in bs]
        hbs = [_stack_weight([b[6], b[4], b[5], b[7]]) for b in bs]

        xs_next = xs
        hy = []
        cy = []
        for layer in six.moves.range(n_layers):

            def _one_directional_loop(di):
                # di=0, forward LSTM
                # di=1, backward LSTM
                h_list = []
                c_list = []
                layer_idx = direction * layer + di
                h = hx[layer_idx]
                c = cx[layer_idx]
                if di == 0:
                    xs_list = xs_next
                else:
                    xs_list = reversed(xs_next)
                for x in xs_list:
                    batch = x.shape[0]
                    if h.shape[0] > batch:
                        h, h_rest = split_axis.split_axis(h, [batch], axis=0)
                        c, c_rest = split_axis.split_axis(c, [batch], axis=0)
                    else:
                        h_rest = None
                        c_rest = None

                    if layer != 0:
                        x = dropout.dropout(x, ratio=dropout_ratio,
                                            train=train)
                    lstm_in = linear.linear(x, xws[layer_idx],
                                            xbs[layer_idx]) + \
                        linear.linear(h, hws[layer_idx], hbs[layer_idx])

                    c_bar, h_bar = lstm.lstm(c, lstm_in)
                    if h_rest is not None:
                        h = concat.concat([h_bar, h_rest], axis=0)
                        c = concat.concat([c_bar, c_rest], axis=0)
                    else:
                        h = h_bar
                        c = c_bar
                    h_list.append(h_bar)
                    c_list.append(c_bar)
                return h, c, h_list, c_list

            h, c, h_forward, c_forward = _one_directional_loop(di=0)
            hy.append(h)
            cy.append(c)

            if use_bi_direction:
                # BiLSTM
                h, c, h_backward, c_backward = _one_directional_loop(di=1)
                hy.append(h)
                cy.append(c)

                h_backward.reverse()
                # concat
                xs_next = [concat.concat([hfi, hbi], axis=1) for (hfi, hbi) in
                           zip(h_forward, h_backward)]
            else:
                # Uni-directional RNN
                xs_next = h_forward

        ys = xs_next
        hy = stack.stack(hy)
        cy = stack.stack(cy)
        return hy, cy, tuple(ys)
示例#41
0
文件: cell.py 项目: prajdabre/chainer
    def __call__(self, c=None, h=None, x=None, top_n=None):
        """Updates the internal state and returns the Cell outputs.

        Args:
            x (~chainer.Variable): A new batch from the input sequence.
            h (~chainer.Variable): The batched form of the previous state.
            Make sure that you pass the previous state if you
            use stateless RNN cells
            top_n (int): The number of cells from the top whose outputs
            you want (default: outputs of all GRUs are returned)
            When using stateless cells the states of all cells will
            be returned as they will be needed for the next step

        Returns:
            ~chainer.Variable: A concatenation of the outputs (h)
            of the updated cell units over the top N layers;
            by default all layers are considered.
            OR
            (~chainer.Variable, ~chainer.Variable):
            A tuple of concatenation of the outputs (h) and memories (c)
            of the updated cell units over the top N layers;
            by default all layers are considered.

        """
        assert x is not None
        if top_n is None:
            top_n = self.num_layers
        if h is not None:
            assert top_n is self.num_layers
            h = split_axis.split_axis(h, self.num_layers, 1, True)
            if c is not None:
                c = split_axis.split_axis(c, self.num_layers, 1, True)
        h_list = []
        h_curr = x
        for layer_id, layer in enumerate(self):
            layer_params = inspect.getargspec(layer)[0]
            if 'h' in layer_params:
                if 'c' in layer_params:
                    if h is None:
                        if c is None:
                            h_curr = layer(None, None, h_curr)
                        else:
                            h_curr = layer(c[layer_id], None, h_curr)
                    else:
                        if c is None:
                            h_curr = layer(None, h[layer_id], h_curr)
                        else:
                            h_curr = layer(c[layer_id], h[layer_id], h_curr)
                else:
                    assert c is None
                    if h is None:
                        h_curr = layer(None, h_curr)
                    else:
                        h_curr = layer(h[layer_id], h_curr)
            else:
                assert c is None
                assert h is None
                h_curr = layer(h_curr)
            h_list.append(h_curr)
        if len(h_list[0]) == 2:
            h_out = concat.concat([y[1] for y in h_list[-top_n:]], 1)
            c_out = concat.concat([y[0] for y in h_list[-top_n:]], 1)
            return c_out, h_out
        else:
            return concat.concat(h_list[-top_n:], 1)
示例#42
0
def n_step_lstm_base(
        n_layers, dropout_ratio, hx, cx, ws, bs, xs, use_bi_direction,
        **kwargs):
    """Base function for Stack LSTM/BiLSTM functions.

    This function is used at :func:`chainer.functions.n_step_lstm` and
    :func:`chainer.functions.n_step_bilstm`.
    This function's behavior depends on following arguments,
    ``activation`` and ``use_bi_direction``.

    Args:
        n_layers(int): The number of layers.
        dropout_ratio(float): Dropout ratio.
        hx (~chainer.Variable): Variable holding stacked hidden states.
            Its shape is ``(S, B, N)`` where ``S`` is the number of layers and
            is equal to ``n_layers``, ``B`` is the mini-batch size, and ``N``
            is the dimension of the hidden units.
        cx (~chainer.Variable): Variable holding stacked cell states.
            It has the same shape as ``hx``.
        ws (list of list of :class:`~chainer.Variable`): Weight matrices.
            ``ws[i]`` represents the weights for the i-th layer.
            Each ``ws[i]`` is a list containing eight matrices.
            ``ws[i][j]`` corresponds to :math:`W_j` in the equation.
            Only ``ws[0][j]`` where ``0 <= j < 4`` are ``(I, N)``-shape as they
            are multiplied with input variables, where ``I`` is the size of
            the input and ``N`` is the dimension of the hidden units. All
            other matrices are ``(N, N)``-shaped.
        bs (list of list of :class:`~chainer.Variable`): Bias vectors.
            ``bs[i]`` represents the biases for the i-th layer.
            Each ``bs[i]`` is a list containing eight vectors.
            ``bs[i][j]`` corresponds to :math:`b_j` in the equation.
            The shape of each matrix is ``(N,)``.
        xs (list of :class:`~chainer.Variable`):
            A list of :class:`~chainer.Variable`
            holding input values. Each element ``xs[t]`` holds input value
            for time ``t``. Its shape is ``(B_t, I)``, where ``B_t`` is the
            mini-batch size for time ``t``. The sequences must be transposed.
            :func:`~chainer.functions.transpose_sequence` can be used to
            transpose a list of :class:`~chainer.Variable`\\ s each
            representing a sequence.
            When sequences has different lengths, they must be
            sorted in descending order of their lengths before transposing.
            So ``xs`` needs to satisfy
            ``xs[t].shape[0] >= xs[t + 1].shape[0]``.
        use_bi_direction (bool): If ``True``, this function uses Bi-directional
            LSTM.

    Returns:
        tuple: This functions returns a tuple concaining three elements,
        ``hy``, ``cy`` and ``ys``.

            - ``hy`` is an updated hidden states whose shape is the same as
              ``hx``.
            - ``cy`` is an updated cell states whose shape is the same as
              ``cx``.
            - ``ys`` is a list of :class:`~chainer.Variable` . Each element
              ``ys[t]`` holds hidden states of the last layer corresponding
              to an input ``xs[t]``. Its shape is ``(B_t, N)`` where ``B_t`` is
              the mini-batch size for time ``t``. Note that ``B_t`` is the same
              value as ``xs[t]``.

    .. seealso::

       :func:`chainer.functions.n_step_lstm`
       :func:`chainer.functions.n_step_bilstm`

    """

    argument.check_unexpected_kwargs(
        kwargs, train='train argument is not supported anymore. '
        'Use chainer.using_config',
        use_cudnn='use_cudnn argument is not supported anymore. '
        'Use chainer.using_config')
    argument.assert_kwargs_empty(kwargs)

    xp = cuda.get_array_module(hx, hx.data)

    if xp is not numpy and chainer.should_use_cudnn('>=auto', 5000):
        states = get_random_state().create_dropout_states(dropout_ratio)
        lengths = [len(x) for x in xs]
        xs = chainer.functions.concat(xs, axis=0)
        # flatten all input variables
        inputs = tuple(itertools.chain(
            (hx, cx),
            itertools.chain.from_iterable(ws),
            itertools.chain.from_iterable(bs),
            (xs,)))
        if use_bi_direction:
            rnn = NStepBiLSTM
        else:
            rnn = NStepLSTM

        hy, cy, ys = rnn(n_layers, states, lengths)(*inputs)
        sections = numpy.cumsum(lengths[:-1])
        ys = chainer.functions.split_axis(ys, sections, 0)
        return hy, cy, ys

    else:
        direction = 2 if use_bi_direction else 1
        split_size = n_layers * direction
        hx = split_axis.split_axis(hx, split_size, axis=0, force_tuple=True)
        hx = [reshape.reshape(h, h.shape[1:]) for h in hx]
        cx = split_axis.split_axis(cx, split_size, axis=0, force_tuple=True)
        cx = [reshape.reshape(c, c.shape[1:]) for c in cx]

        xws = [_stack_weight([w[2], w[0], w[1], w[3]]) for w in ws]
        hws = [_stack_weight([w[6], w[4], w[5], w[7]]) for w in ws]
        xbs = [_stack_weight([b[2], b[0], b[1], b[3]]) for b in bs]
        hbs = [_stack_weight([b[6], b[4], b[5], b[7]]) for b in bs]

        xs_next = xs
        hy = []
        cy = []
        for layer in six.moves.range(n_layers):

            def _one_directional_loop(di):
                # di=0, forward LSTM
                # di=1, backward LSTM
                h_list = []
                c_list = []
                layer_idx = direction * layer + di
                h = hx[layer_idx]
                c = cx[layer_idx]
                if di == 0:
                    xs_list = xs_next
                else:
                    xs_list = reversed(xs_next)
                for x in xs_list:
                    batch = x.shape[0]
                    if h.shape[0] > batch:
                        h, h_rest = split_axis.split_axis(h, [batch], axis=0)
                        c, c_rest = split_axis.split_axis(c, [batch], axis=0)
                    else:
                        h_rest = None
                        c_rest = None

                    if layer != 0:
                        x = dropout.dropout(x, ratio=dropout_ratio)
                    lstm_in = linear.linear(x, xws[layer_idx],
                                            xbs[layer_idx]) + \
                        linear.linear(h, hws[layer_idx], hbs[layer_idx])

                    c_bar, h_bar = lstm.lstm(c, lstm_in)
                    if h_rest is not None:
                        h = concat.concat([h_bar, h_rest], axis=0)
                        c = concat.concat([c_bar, c_rest], axis=0)
                    else:
                        h = h_bar
                        c = c_bar
                    h_list.append(h_bar)
                    c_list.append(c_bar)
                return h, c, h_list, c_list

            h, c, h_forward, c_forward = _one_directional_loop(di=0)
            hy.append(h)
            cy.append(c)

            if use_bi_direction:
                # BiLSTM
                h, c, h_backward, c_backward = _one_directional_loop(di=1)
                hy.append(h)
                cy.append(c)

                h_backward.reverse()
                # concat
                xs_next = [concat.concat([hfi, hbi], axis=1) for (hfi, hbi) in
                           zip(h_forward, h_backward)]
            else:
                # Uni-directional RNN
                xs_next = h_forward

        ys = xs_next
        hy = stack.stack(hy)
        cy = stack.stack(cy)
        return hy, cy, tuple(ys)
示例#43
0
文件: crf1d.py 项目: Fhrozen/chainer
def crf1d(cost, xs, ys, reduce='mean'):
    """Calculates negative log-likelihood of linear-chain CRF.

    It takes a transition cost matrix, a sequence of costs, and a sequence of
    labels. Let :math:`c_{st}` be a transition cost from a label :math:`s` to
    a label :math:`t`, :math:`x_{it}` be a cost of a label :math:`t` at
    position :math:`i`, and :math:`y_i` be an expected label at position
    :math:`i`. The negative log-likelihood of linear-chain CRF is defined as

    .. math::
        L = -\\left( \\sum_{i=1}^l x_{iy_i} + \\
             \\sum_{i=1}^{l-1} c_{y_i y_{i+1}} - {\\log(Z)} \\right) ,

    where :math:`l` is the length of the input sequence and :math:`Z` is the
    normalizing constant called partition function.

    .. note::

       When you want to calculate the negative log-likelihood of sequences
       which have different lengths, sort the sequences in descending order of
       lengths and transpose the sequences.
       For example, you have three input sequences:

       >>> a1 = a2 = a3 = a4 = np.random.uniform(-1, 1, 3).astype(np.float32)
       >>> b1 = b2 = b3 = np.random.uniform(-1, 1, 3).astype(np.float32)
       >>> c1 = c2 = np.random.uniform(-1, 1, 3).astype(np.float32)

       >>> a = [a1, a2, a3, a4]
       >>> b = [b1, b2, b3]
       >>> c = [c1, c2]

       where ``a1`` and all other variables are arrays with ``(K,)`` shape.
       Make a transpose of the sequences:

       >>> x1 = np.stack([a1, b1, c1])
       >>> x2 = np.stack([a2, b2, c2])
       >>> x3 = np.stack([a3, b3])
       >>> x4 = np.stack([a4])

       and make a list of the arrays:

       >>> xs = [x1, x2, x3, x4]

       You need to make label sequences in the same fashion.
       And then, call the function:

       >>> cost = chainer.Variable(
       ...     np.random.uniform(-1, 1, (3, 3)).astype(np.float32))
       >>> ys = [np.zeros(x.shape[0:1], dtype=np.int32) for x in xs]
       >>> loss = F.crf1d(cost, xs, ys)

       It calculates mean of the negative log-likelihood of the three
       sequences.

       The output is a variable whose value depends on the value of
       the option ``reduce``. If it is ``'no'``, it holds the elementwise
       loss values. If it is ``'mean'``, it holds mean of the loss values.


    Args:
        cost (Variable): A :math:`K \\times K` matrix which holds transition
            cost between two labels, where :math:`K` is the number of labels.
        xs (list of Variable): Input vector for each label.
            ``len(xs)`` denotes the length of the sequence,
            and each :class:`~chainer.Variable` holds a :math:`B \\times K`
            matrix, where :math:`B` is mini-batch size, :math:`K` is the number
            of labels.
            Note that :math:`B`\\ s in all the variables are not necessary
            the same, i.e., it accepts the input sequences with different
            lengths.
        ys (list of Variable): Expected output labels. It needs to have the
            same length as ``xs``. Each :class:`~chainer.Variable` holds a
            :math:`B` integer vector.
            When ``x`` in ``xs`` has the different :math:`B`, correspoding
            ``y`` has the same :math:`B`. In other words, ``ys`` must satisfy
            ``ys[i].shape == xs[i].shape[0:1]`` for all ``i``.
        reduce (str): Reduction option. Its value must be either
            ``'mean'`` or ``'no'``. Otherwise, :class:`ValueError` is raised.

    Returns:
        ~chainer.Variable: A variable holding the average negative
        log-likelihood of the input sequences.

    .. note::

        See detail in the original paper: `Conditional Random Fields:
        Probabilistic Models for Segmenting and Labeling Sequence Data
        <https://repository.upenn.edu/cis_papers/159/>`_.

    """
    if reduce not in ('mean', 'no'):
        raise ValueError(
            "only 'mean' and 'no' are valid for 'reduce', but '%s' is "
            'given' % reduce)

    assert xs[0].shape[1] == cost.shape[0]

    n_label = cost.shape[0]
    n_batch = xs[0].shape[0]

    alpha = xs[0]
    alphas = []
    for x in xs[1:]:
        batch = x.shape[0]
        if alpha.shape[0] > batch:
            alpha, alpha_rest = split_axis.split_axis(alpha, [batch], axis=0)
            alphas.append(alpha_rest)
        b_alpha, b_cost = broadcast.broadcast(alpha[..., None], cost)
        alpha = logsumexp.logsumexp(b_alpha + b_cost, axis=1) + x

    if len(alphas) > 0:
        alphas.append(alpha)
        alpha = concat.concat(alphas[::-1], axis=0)

    logz = logsumexp.logsumexp(alpha, axis=1)

    cost = reshape.reshape(cost, (cost.size, 1))
    score = select_item.select_item(xs[0], ys[0])
    scores = []
    for x, y, y_prev in zip(xs[1:], ys[1:], ys[:-1]):
        batch = x.shape[0]
        if score.shape[0] > batch:
            y_prev, _ = split_axis.split_axis(y_prev, [batch], axis=0)
            score, score_rest = split_axis.split_axis(score, [batch], axis=0)
            scores.append(score_rest)
        score += (select_item.select_item(x, y) + reshape.reshape(
            embed_id.embed_id(y_prev * n_label + y, cost), (batch,)))

    if len(scores) > 0:
        scores.append(score)
        score = concat.concat(scores[::-1], axis=0)

    loss = logz - score
    if reduce == 'mean':
        return _sum.sum(loss) / n_batch
    else:
        return loss
示例#44
0
            def _one_directional_loop(di):
                # di=0, forward GRU
                # di=1, backward GRU
                xs_list = xs_next if di == 0 else reversed(xs_next)
                layer_idx = direction * layer + di
                h = h0[layer_idx]

                # h:d_bar_s_1
                # h_bar:d_s
                '''
                print(len(xs_list))
                print(len(xs_list[0]))
                print(len(xs_list[0][0]))
                '''
                h_list = []
                h_bar_list = []
                c_s_list = []
                z_s_list = []
                for x in xs_list:
                    batch = x.shape[0]
                    if h.shape[0] > batch:
                        h, h_rest = split_axis.split_axis(h, [batch], axis=0)
                    else:
                        h_rest = None

                    if layer > 0:
                        x = dropout.dropout(x, ratio=dropout_ratio)

                    gru_x = linear.linear(x, xws[layer_idx], xbs[layer_idx])
                    gru_h = linear.linear(h, hws[layer_idx], hbs[layer_idx])

                    W_r_x, W_z_x, W_x = split_axis.split_axis(gru_x, 3, axis=1)
                    U_r_h, U_z_h, U_x = split_axis.split_axis(gru_h, 3, axis=1)

                    r = sigmoid.sigmoid(W_r_x + U_r_h)
                    z = sigmoid.sigmoid(W_z_x + U_z_h)
                    h_bar = tanh.tanh(W_x + r * U_x)
                    h_bar = (1 - z) * h_bar + z * h

                    phi_d = linear.linear(h_bar, W2, B2)
                    '''
                    print(type(phi_ht), len(phi_ht))
                    print(type(phi_ht[0]), len(phi_ht[0]))
                    print(type(phi_ht[0][0]), len(phi_ht[0][0]))
                    
                    print(type(phi_d), len(phi_d))
                    print(type(phi_d[0]), len(phi_d[0]), phi_d[0].shape)
                    '''
                    #phi_ht_len = [t.shape[1] for t in phi_ht]
                    #phi_ht_section = np.cumsum(phi_ht_len[:-1])
                    #concat_phi_ht  = F.concat(phi_ht, axis=1)
                    #concat_phi_d = [F.concat([phi_d[i]]*phi_ht_len[i], axis=0) for i in range(batch)]
                    #concat_phi_d = F.concat(concat_phi_d, axis=0)
                    #concat_phi_d = F.concat(F.transpose(phi_d), axis=0)

                    u_st = list(
                        map(
                            lambda x, y: reshape.reshape((linear.linear(
                                x, reshape.reshape(y, (1, len(y))))),
                                                         (len(x), )), phi_ht,
                            phi_d))  #(4)

                    sum_u = list(map(F.sum, u_st))
                    alpha_st = list(
                        map(lambda x, y: x / F.broadcast_to(y, x.shape), u_st,
                            sum_u))  #(3)
                    z_s = list(map(F.argmax, alpha_st))
                    z_s = list(map(lambda x: F.broadcast_to(x, (1, )), z_s))
                    z_s = F.concat(z_s, axis=0)
                    '''
                    print(type(alpha_st),len(alpha_st))
                    print(type(alpha_st[0]),len(alpha_st[0]))
                    
                    print(alpha_st[0].shape)
                    print(ht[0].shape)
                    '''
                    c_s = list(
                        map(
                            lambda x, y: F.sum(F.broadcast_to(
                                reshape.reshape(x,
                                                (x.shape[0], 1)), y.shape) * y,
                                               axis=0), alpha_st, ht))  #(2)

                    c_s_2d = list(
                        map(lambda x: reshape.reshape(x, (1, len(x))), c_s))
                    concat_c_s = F.concat(c_s_2d, axis=0)

                    c_s = list(
                        map(lambda x: F.broadcast_to(x, (1, len(x))), c_s))
                    c_s = F.concat(c_s, axis=0)
                    '''
                    print(type(c_s), len(c_s))
                    print(type(c_s[0]), len(c_s[0]), c_s[0].shape)
                    '''
                    h = F.relu(
                        linear.linear(F.concat([concat_c_s, h_bar], axis=1),
                                      W3, B3))

                    h_list.append(h)
                    h_bar_list.append(h_bar)
                    c_s_list.append(c_s)
                    z_s_list.append(z_s)

                    #単語数の違いを担保
                    if h_rest is not None:
                        h = concat.concat([h, h_rest], axis=0)
                        h_bar = concat.concat([h_bar, h_rest], axis=0)

                return h_list, h_bar_list, c_s_list, z_s_list
示例#45
0
def n_step_lstm(n_layers,
                dropout_ratio,
                hx,
                cx,
                ws,
                bs,
                xs,
                train=True,
                use_cudnn=True):
    """Stacked Long Short-Term Memory function for sequence inputs.

    This function calculates stacked LSTM with sequences. This function gets
    an initial hidden state :math:`h_0`, an initial cell state :math:`c_0`,
    an input sequence :math:`x`, weight matrices :math:`W`, and bias vectors
    :math:`b`.
    This function calculates hidden states :math:`h_t` and :math:`c_t` for each
    time :math:`t` from input :math:`x_t`.

    .. math::

       i_t = \sigma(W_0 x_t + W_4 h_{t-1} + b_0 + b_4)
       f_t = \sigma(W_1 x_t + W_5 h_{t-1} + b_1 + b_5)
       o_t = \sigma(W_2 x_t + W_6 h_{t-1} + b_2 + b_6)
       a_t = \tanh(W_3 x_t + W_7 h_{t-1} + b_3 + b_7)
       c_t = f_t \dot c_{t-1} + i_t \dot a_t
       h_t = o_t \dot \tanh(c_t)

    As the function accepts a sequence, it calculates :math:`h_t` for all
    :math:`t` with one call. Eight weight matrices and eight bias vectors are
    required for each layers. So, when :math:`S` layers exists, you need to
    prepare :math:`8S` weigth matrices and :math:`8S` bias vectors.

    If the number of layers ``n_layers`` is greather than :math:`1`, input
    of ``k``-th layer is hidden state ``h_t`` of ``k-1``-th layer.
    Note that all input variables except first layer may have different shape
    from the first layer.

    Args:
        n_layers(int): Number of layers.
        dropout_ratio(float): Dropout ratio.
        hx (chainer.Variable): Variable holding stacked hidden states.
            Its shape is ``(S, B, N)`` where ``S`` is number of layers and is
            equal to ``n_layers``, ``B`` is mini-batch size, and ``N`` is
            dimention of hidden units.
        cx (chainer.Variable): Variable holding stacked cell states.
            It has the same shape as ``hx``.
        ws (list of list of chainer.Variable): Weight matrices. ``ws[i]``
            represents weights for i-th layer.
            Each ``ws[i]`` is a list containing eight matrices.
            ``ws[i][j]`` is corresponding with ``W_j`` in the equation.
            Only ``ws[0][j]`` where ``0 <= j < 4`` is ``(I, N)`` shape as they
            are multiplied with input variables. All other matrices has
            ``(N, N)`` shape.
        bs (list of list of chainer.Variable): Bias vectors. ``bs[i]``
            represnents biases for i-th layer.
            Each ``bs[i]`` is a list containing eight vectors.
            ``bs[i][j]`` is corresponding with ``b_j`` in the equation.
            Shape of each matrix is ``(N,)`` where ``N`` is dimention of
            hidden units.
        xs (list of chainer.Variable): A list of :class:`chainer.Variable`
            holding input values. Each element ``xs[t]`` holds input value
            for time ``t``. Its shape is ``(B_t, I)``, where ``B_t`` is
            mini-batch size for time ``t``, and ``I`` is size of input units.
            Note that this functions supports variable length sequences.
            When sequneces has different lengths, sort sequences in descending
            order by length, and transpose the sorted sequence.
            :func:`~chainer.functions.transpose_sequence` transpose a list
            of :func:`~chainer.Variable` holding sequence.
            So ``xs`` needs to satisfy
            ``xs[t].shape[0] >= xs[t + 1].shape[0]``.
        train (bool): If ``True``, this function executes dropout.
        use_cudnn (bool): If ``True``, this function uses cuDNN if available.

    Returns:
        tuple: This functions returns a tuple concaining three elements,
            ``hy``, ``cy`` and ``ys``.

            - ``hy`` is an updated hidden states whose shape is same as ``hx``.
            - ``cy`` is an updated cell states whose shape is same as ``cx``.
            - ``ys`` is a list of :class:~chainer.Variable. Each element
              ``ys[t]`` holds hidden states of the last layer corresponding
              to an input ``xs[t]``. Its shape is ``(B_t, N)`` where ``B_t`` is
              mini-batch size for time ``t``, and ``N`` is size of hidden
              units. Note that ``B_t`` is the same value as ``xs[t]``.

    .. seealso::

       :func:`chainer.functions.lstm`

    """

    xp = cuda.get_array_module(hx, hx.data)

    if use_cudnn and xp is not numpy and cuda.cudnn_enabled and \
       _cudnn_version >= 5000:
        states = get_random_state().create_dropout_states(dropout_ratio)
        # flatten all input variables
        inputs = tuple(
            itertools.chain((hx, cx), itertools.chain.from_iterable(ws),
                            itertools.chain.from_iterable(bs), xs))
        rnn = NStepLSTM(n_layers, states, train=train)
        ret = rnn(*inputs)
        hy, cy = ret[:2]
        ys = ret[2:]
        return hy, cy, ys

    else:
        hx = split_axis.split_axis(hx, n_layers, axis=0, force_tuple=True)
        hx = [reshape.reshape(h, h.shape[1:]) for h in hx]
        cx = split_axis.split_axis(cx, n_layers, axis=0, force_tuple=True)
        cx = [reshape.reshape(c, c.shape[1:]) for c in cx]

        xws = [_stack_weight([w[2], w[0], w[1], w[3]]) for w in ws]
        hws = [_stack_weight([w[6], w[4], w[5], w[7]]) for w in ws]
        xbs = [_stack_weight([b[2], b[0], b[1], b[3]]) for b in bs]
        hbs = [_stack_weight([b[6], b[4], b[5], b[7]]) for b in bs]

        ys = []
        for x in xs:
            batch = x.shape[0]
            h_next = []
            c_next = []
            for layer in six.moves.range(n_layers):
                h = hx[layer]
                c = cx[layer]
                if h.shape[0] > batch:
                    h, h_rest = split_axis.split_axis(h, [batch], axis=0)
                    c, c_rest = split_axis.split_axis(c, [batch], axis=0)
                else:
                    h_rest = None

                x = dropout.dropout(x, ratio=dropout_ratio, train=train)
                h = dropout.dropout(h, ratio=dropout_ratio, train=train)
                lstm_in = linear.linear(x, xws[layer], xbs[layer]) + \
                    linear.linear(h, hws[layer], hbs[layer])

                c_bar, h_bar = lstm.lstm(c, lstm_in)
                if h_rest is not None:
                    h = concat.concat([h_bar, h_rest], axis=0)
                    c = concat.concat([c_bar, c_rest], axis=0)
                else:
                    h = h_bar
                    c = c_bar
                h_next.append(h)
                c_next.append(c)
                x = h_bar
            hx = h_next
            cx = c_next
            ys.append(x)

        hy = stack.stack(hx)
        cy = stack.stack(cx)
        return hy, cy, tuple(ys)
示例#46
0
def n_step_gru_base(n_layers, dropout_ratio, hx, ws, bs, xs, use_bi_direction,
                    **kwargs):
    """n_step_gru_base(n_layers, dropout_ratio, hx, ws, bs, xs, use_bi_direction)

    Base function for Stack GRU/BiGRU functions.

    This function is used at  :func:`chainer.functions.n_step_bigru` and
    :func:`chainer.functions.n_step_gru`.
    This function's behavior depends on argument ``use_bi_direction``.

    .. warning::

       ``train`` and ``use_cudnn`` arguments are not supported anymore since
       v2.
       Instead, use ``chainer.using_config('train', train)`` and
       ``chainer.using_config('use_cudnn', use_cudnn)`` respectively.
       See :func:`chainer.using_config`.

    Args:
        n_layers(int): Number of layers.
        dropout_ratio(float): Dropout ratio.
        hx (chainer.Variable): Variable holding stacked hidden states.
            Its shape is ``(S, B, N)`` where ``S`` is number of layers and is
            equal to ``n_layers``, ``B`` is mini-batch size, and ``N`` is
            dimension of hidden units. Because of bi-direction, the
            first dimension length is ``2S``.
        ws (list of list of chainer.Variable): Weight matrices. ``ws[i]``
            represents weights for i-th layer.
            Each ``ws[i]`` is a list containing six matrices.
            ``ws[i][j]`` is corresponding with ``W_j`` in the equation.
            Only ``ws[0][j]`` where ``0 <= j < 3`` is ``(I, N)`` shape as they
            are multiplied with input variables. All other matrices has
            ``(N, N)`` shape.
        bs (list of list of chainer.Variable): Bias vectors. ``bs[i]``
            represnents biases for i-th layer.
            Each ``bs[i]`` is a list containing six vectors.
            ``bs[i][j]`` is corresponding with ``b_j`` in the equation.
            Shape of each matrix is ``(N,)`` where ``N`` is dimension of
            hidden units.
        xs (list of chainer.Variable): A list of :class:`~chainer.Variable`
            holding input values. Each element ``xs[t]`` holds input value
            for time ``t``. Its shape is ``(B_t, I)``, where ``B_t`` is
            mini-batch size for time ``t``, and ``I`` is size of input units.
            Note that this functions supports variable length sequences.
            When sequneces has different lengths, sort sequences in descending
            order by length, and transpose the sorted sequence.
            :func:`~chainer.functions.transpose_sequence` transpose a list
            of :func:`~chainer.Variable` holding sequence.
            So ``xs`` needs to satisfy
            ``xs[t].shape[0] >= xs[t + 1].shape[0]``.
        activation (str): Activation function name.
            Please select ``tanh`` or ``relu``.
        use_bi_direction (bool): If ``True``, this function uses
            Bi-direction GRU.

    .. seealso::
       :func:`chainer.functions.n_step_rnn`
       :func:`chainer.functions.n_step_birnn`

    """  # NOQA
    argument.check_unexpected_kwargs(
        kwargs,
        train='train argument is not supported anymore. '
        'Use chainer.using_config',
        use_cudnn='use_cudnn argument is not supported anymore. '
        'Use chainer.using_config')
    argument.assert_kwargs_empty(kwargs)

    xp = cuda.get_array_module(hx, hx.data)

    if xp is not numpy and chainer.should_use_cudnn('>=auto', 5000):
        states = get_random_state().create_dropout_states(dropout_ratio)
        # flatten all input variables
        inputs = tuple(
            itertools.chain((hx, ), itertools.chain.from_iterable(ws),
                            itertools.chain.from_iterable(bs), xs))
        if use_bi_direction:
            rnn = NStepBiGRU(n_layers, states)
        else:
            rnn = NStepGRU(n_layers, states)

        ret = rnn(*inputs)
        hy, = ret[:1]
        ys = ret[1:]
        return hy, ys

    else:
        direction = 2 if use_bi_direction else 1
        hx = split_axis.split_axis(hx,
                                   n_layers * direction,
                                   axis=0,
                                   force_tuple=True)
        hx = [reshape.reshape(h, h.shape[1:]) for h in hx]

        xws = [concat.concat([w[0], w[1], w[2]], axis=0) for w in ws]
        hws = [concat.concat([w[3], w[4], w[5]], axis=0) for w in ws]
        xbs = [concat.concat([b[0], b[1], b[2]], axis=0) for b in bs]
        hbs = [concat.concat([b[3], b[4], b[5]], axis=0) for b in bs]

        xs_next = xs
        hy = []
        for layer in six.moves.range(n_layers):

            def _one_directional_loop(di):
                # di=0, forward GRU
                # di=1, backward GRU
                xs_list = xs_next if di == 0 else reversed(xs_next)
                layer_idx = direction * layer + di
                h = hx[layer_idx]
                h_list = []
                for x in xs_list:
                    batch = x.shape[0]
                    if h.shape[0] > batch:
                        h, h_rest = split_axis.split_axis(h, [batch], axis=0)
                    else:
                        h_rest = None

                    if layer > 0:
                        x = dropout.dropout(x, ratio=dropout_ratio)

                    gru_x = linear.linear(x, xws[layer_idx], xbs[layer_idx])
                    gru_h = linear.linear(h, hws[layer_idx], hbs[layer_idx])

                    W_r_x, W_z_x, W_x = split_axis.split_axis(gru_x, 3, axis=1)
                    U_r_h, U_z_h, U_x = split_axis.split_axis(gru_h, 3, axis=1)

                    r = sigmoid.sigmoid(W_r_x + U_r_h)
                    z = sigmoid.sigmoid(W_z_x + U_z_h)
                    h_bar = tanh.tanh(W_x + r * U_x)
                    h_bar = (1 - z) * h_bar + z * h
                    if h_rest is not None:
                        h = concat.concat([h_bar, h_rest], axis=0)
                    else:
                        h = h_bar
                    h_list.append(h_bar)
                return h, h_list

            # Forward GRU
            h, h_forward = _one_directional_loop(di=0)
            hy.append(h)

            if use_bi_direction:
                # Backward GRU
                h, h_backward = _one_directional_loop(di=1)
                h_backward.reverse()
                # Concat
                xs_next = [
                    concat.concat([hfi, hbi], axis=1)
                    for (hfi, hbi) in six.moves.zip(h_forward, h_backward)
                ]
                hy.append(h)
            else:
                # Uni-directional GRU
                xs_next = h_forward

        ys = xs_next
        hy = stack.stack(hy)
        return hy, tuple(ys)
示例#47
0
def crf1d(cost, xs, ys, reduce='mean'):
    """Calculates negative log-likelihood of linear-chain CRF.

    It takes a transition cost matrix, a sequence of costs, and a sequence of
    labels. Let :math:`c_{st}` be a transition cost from a label :math:`s` to
    a label :math:`t`, :math:`x_{it}` be a cost of a label :math:`t` at
    position :math:`i`, and :math:`y_i` be an expected label at position
    :math:`i`. The negative log-likelihood of linear-chain CRF is defined as

    .. math::
        L = -\\left( \\sum_{i=1}^l x_{iy_i} + \\
             \\sum_{i=1}^{l-1} c_{y_i y_{i+1}} - {\\log(Z)} \\right) ,

    where :math:`l` is the length of the input sequence and :math:`Z` is the
    normalizing constant called partition function.

    .. note::

       When you want to calculate the negative log-likelihood of sequences
       which have different lengths, sort the sequences in descending order of
       lengths and transpose the sequences.
       For example, you have three input sequences:

       >>> a1 = a2 = a3 = a4 = np.random.uniform(-1, 1, 3).astype('f')
       >>> b1 = b2 = b3 = np.random.uniform(-1, 1, 3).astype('f')
       >>> c1 = c2 = np.random.uniform(-1, 1, 3).astype('f')

       >>> a = [a1, a2, a3, a4]
       >>> b = [b1, b2, b3]
       >>> c = [c1, c2]

       where ``a1`` and all other variables are arrays with ``(K,)`` shape.
       Make a transpose of the sequences:

       >>> x1 = np.stack([a1, b1, c1])
       >>> x2 = np.stack([a2, b2, c2])
       >>> x3 = np.stack([a3, b3])
       >>> x4 = np.stack([a4])

       and make a list of the arrays:

       >>> xs = [x1, x2, x3, x4]

       You need to make label sequences in the same fashion.
       And then, call the function:

       >>> cost = chainer.Variable(
       ...     np.random.uniform(-1, 1, (3, 3)).astype('f'))
       >>> ys = [np.zeros(x.shape[0:1], dtype='i') for x in xs]
       >>> loss = F.crf1d(cost, xs, ys)

       It calculates mean of the negative log-likelihood of the three
       sequences.

       The output is a variable whose value depends on the value of
       the option ``reduce``. If it is ``'no'``, it holds the elementwise
       loss values. If it is ``'mean'``, it holds mean of the loss values.


    Args:
        cost (Variable): A :math:`K \\times K` matrix which holds transition
            cost between two labels, where :math:`K` is the number of labels.
        xs (list of Variable): Input vector for each label.
            ``len(xs)`` denotes the length of the sequence,
            and each :class:`~chainer.Variable` holds a :math:`B \\times K`
            matrix, where :math:`B` is mini-batch size, :math:`K` is the number
            of labels.
            Note that :math:`B` s in all the variables are not necessary
            the same, i.e., it accepts the input sequences with different
            lengths.
        ys (list of Variable): Expected output labels. It needs to have the
            same length as ``xs``. Each :class:`~chainer.Variable` holds a
            :math:`B` integer vector.
            When ``x`` in ``xs`` has the different :math:`B`, correspoding
            ``y`` has the same :math:`B`. In other words, ``ys`` must satisfy
            ``ys[i].shape == xs[i].shape[0:1]`` for all ``i``.
        reduce (str): Reduction option. Its value must be either
            ``'mean'`` or ``'no'``. Otherwise, :class:`ValueError` is raised.

    Returns:
        ~chainer.Variable: A variable holding the average negative
        log-likelihood of the input sequences.

    .. note::

        See detail in the original paper: `Conditional Random Fields:
        Probabilistic Models for Segmenting and Labeling Sequence Data
        <http://repository.upenn.edu/cis_papers/159/>`_.

    """
    if reduce not in ('mean', 'no'):
        raise ValueError(
            "only 'mean' and 'no' are valid for 'reduce', but '%s' is "
            'given' % reduce)

    assert xs[0].shape[1] == cost.shape[0]

    n_label = cost.shape[0]
    n_batch = xs[0].shape[0]

    alpha = xs[0]
    alphas = []
    for x in xs[1:]:
        batch = x.shape[0]
        if alpha.shape[0] > batch:
            alpha, alpha_rest = split_axis.split_axis(alpha, [batch], axis=0)
            alphas.append(alpha_rest)
        b_alpha, b_cost = broadcast.broadcast(alpha[..., None], cost)
        alpha = logsumexp.logsumexp(b_alpha + b_cost, axis=1) + x

    if len(alphas) > 0:
        alphas.append(alpha)
        alpha = concat.concat(alphas[::-1], axis=0)

    logz = logsumexp.logsumexp(alpha, axis=1)

    cost = reshape.reshape(cost, (cost.size, 1))
    score = select_item.select_item(xs[0], ys[0])
    scores = []
    for x, y, y_prev in zip(xs[1:], ys[1:], ys[:-1]):
        batch = x.shape[0]
        if score.shape[0] > batch:
            y_prev, _ = split_axis.split_axis(y_prev, [batch], axis=0)
            score, score_rest = split_axis.split_axis(score, [batch], axis=0)
            scores.append(score_rest)
        score += (
            select_item.select_item(x, y) +
            reshape.reshape(embed_id.embed_id(y_prev * n_label + y, cost),
                            (batch, )))

    if len(scores) > 0:
        scores.append(score)
        score = concat.concat(scores[::-1], axis=0)

    loss = logz - score
    if reduce == 'mean':
        return _sum.sum(loss) / n_batch
    else:
        return loss
示例#48
0
def n_step_rnn_base(n_layers, dropout_ratio, hx, ws, bs, xs,
                    activation, use_bi_direction, **kwargs):
    """n_step_rnn_base(n_layers, dropout_ratio, hx, ws, bs, xs, activation, use_bi_direction)

    Base function for Stack RNN/BiRNN functions.

    This function is used at  :func:`chainer.functions.n_step_birnn` and
    :func:`chainer.functions.n_step_rnn`.
    This function's behavior depends on following arguments,
    ``activation`` and ``use_bi_direction``.

    .. warning::

       ``train`` and ``use_cudnn`` arguments are not supported anymore since
       v2.
       Instead, use ``chainer.using_config('train', train)`` and
       ``chainer.using_config('use_cudnn', use_cudnn)`` respectively.
       See :func:`chainer.using_config`.

    Args:
        n_layers(int): Number of layers.
        dropout_ratio(float): Dropout ratio.
        hx (chainer.Variable): Variable holding stacked hidden states.
            Its shape is ``(S, B, N)`` where ``S`` is number of layers and is
            equal to ``n_layers``, ``B`` is mini-batch size, and ``N`` is
            dimention of hidden units.
        ws (list of list of chainer.Variable): Weight matrices. ``ws[i]``
            represents weights for i-th layer.
            Each ``ws[i]`` is a list containing two matrices.
            ``ws[i][j]`` is corresponding with ``W_j`` in the equation.
            Only ``ws[0][j]`` where ``0 <= j < 1`` is ``(I, N)`` shape as they
            are multiplied with input variables. All other matrices has
            ``(N, N)`` shape.
        bs (list of list of chainer.Variable): Bias vectors. ``bs[i]``
            represnents biases for i-th layer.
            Each ``bs[i]`` is a list containing two vectors.
            ``bs[i][j]`` is corresponding with ``b_j`` in the equation.
            Shape of each matrix is ``(N,)`` where ``N`` is dimention of
            hidden units.
        xs (list of chainer.Variable): A list of :class:`~chainer.Variable`
            holding input values. Each element ``xs[t]`` holds input value
            for time ``t``. Its shape is ``(B_t, I)``, where ``B_t`` is
            mini-batch size for time ``t``, and ``I`` is size of input units.
            Note that this functions supports variable length sequences.
            When sequneces has different lengths, sort sequences in descending
            order by length, and transpose the sorted sequence.
            :func:`~chainer.functions.transpose_sequence` transpose a list
            of :func:`~chainer.Variable` holding sequence.
            So ``xs`` needs to satisfy
            ``xs[t].shape[0] >= xs[t + 1].shape[0]``.
        activation (str): Activation function name.
            Please select ``tanh`` or ``relu``.
        use_bi_direction (bool): If ``True``, this function uses
            Bi-directional RNN.

    Returns:
        tuple: This functions returns a tuple concaining three elements,
            ``hy`` and ``ys``.

            - ``hy`` is an updated hidden states whose shape is same as ``hx``.
            - ``ys`` is a list of :class:`~chainer.Variable` . Each element
              ``ys[t]`` holds hidden states of the last layer corresponding
              to an input ``xs[t]``. Its shape is ``(B_t, N)`` where ``B_t``
              is mini-batch size for time ``t``, and ``N`` is size of hidden
              units. Note that ``B_t`` is the same value as ``xs[t]``.

    .. seealso::
       :func:`chainer.functions.n_step_rnn`
       :func:`chainer.functions.n_step_birnn`

    """  # NOQA

    argument.check_unexpected_kwargs(
        kwargs, train='train argument is not supported anymore. '
        'Use chainer.using_config',
        use_cudnn='use_cudnn argument is not supported anymore. '
        'Use chainer.using_config')
    argument.assert_kwargs_empty(kwargs)

    activation_list = ['tanh', 'relu']
    if activation not in activation_list:
        candidate = ','.join(activation_list)
        raise ValueError('Invalid activation: "%s". Please select from [%s]'
                         % (activation, candidate))

    xp = cuda.get_array_module(hx)

    if xp is not numpy and chainer.should_use_cudnn('>=auto', 5000):
        states = get_random_state().create_dropout_states(dropout_ratio)
        # flatten all input variables
        inputs = tuple(itertools.chain(
            (hx, ),
            itertools.chain.from_iterable(ws),
            itertools.chain.from_iterable(bs),
            xs))
        if use_bi_direction:
            # Bi-directional RNN
            if activation == 'tanh':
                rnn = NStepBiRNNTanh(n_layers, states)
            elif activation == 'relu':
                rnn = NStepBiRNNReLU(n_layers, states)
        else:
            # Uni-directional RNN
            if activation == 'tanh':
                rnn = NStepRNNTanh(n_layers, states)
            elif activation == 'relu':
                rnn = NStepRNNReLU(n_layers, states)

        ret = rnn(*inputs)
        hy, = ret[:1]
        ys = ret[1:]
        return hy, ys

    else:

        direction = 2 if use_bi_direction else 1
        hx = split_axis.split_axis(hx, n_layers * direction, axis=0,
                                   force_tuple=True)
        hx = [reshape.reshape(h, h.shape[1:]) for h in hx]

        xws = [_stack_weight([w[0]]) for w in ws]
        hws = [_stack_weight([w[1]]) for w in ws]
        xbs = [_stack_weight([b[0]]) for b in bs]
        hbs = [_stack_weight([b[1]]) for b in bs]

        xs_next = xs
        hy = []
        for layer in six.moves.range(n_layers):

            def _one_directional_loop(di):
                # di=0, forward RNN
                # di=1, backward RNN
                xs_list = xs_next if di == 0 else reversed(xs_next)
                layer_idx = direction * layer + di
                h = hx[layer_idx]
                h_list = []
                for x in xs_list:
                    batch = x.shape[0]
                    if h.shape[0] > batch:
                        h, h_rest = split_axis.split_axis(h, [batch], axis=0)
                    else:
                        h_rest = None

                    if layer > 0:
                        x = dropout.dropout(x, ratio=dropout_ratio)

                    rnn_in = (linear.linear(x, xws[layer_idx],
                                            xbs[layer_idx]) +
                              linear.linear(h, hws[layer_idx], hbs[layer_idx]))
                    if activation == 'tanh':
                        h_bar = tanh.tanh(rnn_in)
                    elif activation == 'relu':
                        h_bar = relu.relu(rnn_in)

                    if h_rest is not None:
                        h = concat.concat([h_bar, h_rest], axis=0)
                    else:
                        h = h_bar
                    h_list.append(h_bar)
                return h, h_list

            # Forward RNN
            h, h_forward = _one_directional_loop(di=0)
            hy.append(h)

            if use_bi_direction:
                # Backward RNN
                h, h_backward = _one_directional_loop(di=1)
                h_backward.reverse()
                # Concat
                xs_next = [concat.concat([hfi, hbi], axis=1) for (hfi, hbi) in
                           six.moves.zip(h_forward, h_backward)]
                hy.append(h)
            else:
                # Uni-directional RNN
                xs_next = h_forward

        ys = xs_next
        hy = stack.stack(hy)
        return hy, tuple(ys)
示例#49
0
def fixed_length_n_step_lstm(
    n_layers,
    dropout_ratio,
    hx,
    cx,
    ws,
    bs,
    xs,
    train=True,
):

    xp = cuda.get_array_module(hx, hx.data)

    if xp is not numpy and cuda.cudnn_enabled and _cudnn_version >= 5000:
        states = get_random_state().create_dropout_states(dropout_ratio)
        # flatten all input variables
        inputs = tuple(
            itertools.chain((hx, cx), itertools.chain.from_iterable(ws),
                            itertools.chain.from_iterable(bs), (xs, )))
        rnn = FixedLengthNStepLSTMFunction(n_layers, states, train=train)
        ret = rnn(*inputs)
        hy, cy, ys = ret
        _, batch_size, dim = hy.shape
        ys_reshape = F.reshape(ys,
                               (-1, batch_size, dim))  # (length, batch, dim)
        return hy, cy, ys_reshape

    else:
        hx = split_axis.split_axis(hx, n_layers, axis=0, force_tuple=True)
        hx = [reshape.reshape(h, h.shape[1:]) for h in hx]
        cx = split_axis.split_axis(cx, n_layers, axis=0, force_tuple=True)
        cx = [reshape.reshape(c, c.shape[1:]) for c in cx]

        xws = [_stack_weight([w[2], w[0], w[1], w[3]]) for w in ws]
        hws = [_stack_weight([w[6], w[4], w[5], w[7]]) for w in ws]
        xbs = [_stack_weight([b[2], b[0], b[1], b[3]]) for b in bs]
        hbs = [_stack_weight([b[6], b[4], b[5], b[7]]) for b in bs]

        ys = []
        for x in xs:
            batch = x.shape[0]
            h_next = []
            c_next = []
            for layer in six.moves.range(n_layers):
                h = hx[layer]
                c = cx[layer]
                if h.shape[0] > batch:
                    h, h_rest = split_axis.split_axis(h, [batch], axis=0)
                    c, c_rest = split_axis.split_axis(c, [batch], axis=0)
                else:
                    h_rest = None

                x = dropout.dropout(x, ratio=dropout_ratio)
                h = dropout.dropout(h, ratio=dropout_ratio)
                lstm_in = linear.linear(x, xws[layer], xbs[layer]) + \
                          linear.linear(h, hws[layer], hbs[layer])

                c_bar, h_bar = lstm.lstm(c, lstm_in)
                if h_rest is not None:
                    h = concat.concat([h_bar, h_rest], axis=0)
                    c = concat.concat([c_bar, c_rest], axis=0)
                else:
                    h = h_bar
                    c = c_bar
                h_next.append(h)
                c_next.append(c)
                x = h_bar
            hx = h_next
            cx = c_next
            ys.append(x)

        hy = stack.stack(hx)
        cy = stack.stack(cx)
        #return hy, cy, tuple(ys)
        ys_concat = F.concat(ys, axis=0)
        ys_reshape = F.reshape(
            ys_concat,
            (-1, ys[0].shape[0], ys[0].shape[1]))  # (length, batch, dim)

        return hy, cy, ys_reshape
示例#50
0
def n_step_lstm_base(n_layers, dropout_ratio, hx, cx, ws, bs, xs, train,
                     use_cudnn, use_bi_direction):
    """Base function for Stack LSTM/BiLSTM functions.

    This function is used at :func:`chainer.functions.n_step_lstm` and
    :func:`chainer.functions.n_step_bilstm`.
    This function's behavior depends on following arguments,
    ``activation`` and ``use_bi_direction``.

    Args:
        n_layers(int): Number of layers.
        dropout_ratio(float): Dropout ratio.
        hx (chainer.Variable): Variable holding stacked hidden states.
            Its shape is ``(S, B, N)`` where ``S`` is number of layers and is
            equal to ``n_layers``, ``B`` is mini-batch size, and ``N`` is
            dimention of hidden units.
        cx (chainer.Variable): Variable holding stacked cell states.
            It has the same shape as ``hx``.
        ws (list of list of chainer.Variable): Weight matrices. ``ws[i]``
            represents weights for i-th layer.
            Each ``ws[i]`` is a list containing eight matrices.
            ``ws[i][j]`` is corresponding with ``W_j`` in the equation.
            Only ``ws[0][j]`` where ``0 <= j < 4`` is ``(I, N)`` shape as they
            are multiplied with input variables. All other matrices has
            ``(N, N)`` shape.
        bs (list of list of chainer.Variable): Bias vectors. ``bs[i]``
            represnents biases for i-th layer.
            Each ``bs[i]`` is a list containing eight vectors.
            ``bs[i][j]`` is corresponding with ``b_j`` in the equation.
            Shape of each matrix is ``(N,)`` where ``N`` is dimention of
            hidden units.
        xs (list of chainer.Variable): A list of :class:`~chainer.Variable`
            holding input values. Each element ``xs[t]`` holds input value
            for time ``t``. Its shape is ``(B_t, I)``, where ``B_t`` is
            mini-batch size for time ``t``, and ``I`` is size of input units.
            Note that this functions supports variable length sequences.
            When sequneces has different lengths, sort sequences in descending
            order by length, and transpose the sorted sequence.
            :func:`~chainer.functions.transpose_sequence` transpose a list
            of :func:`~chainer.Variable` holding sequence.
            So ``xs`` needs to satisfy
            ``xs[t].shape[0] >= xs[t + 1].shape[0]``.
        train (bool): If ``True``, this function executes dropout.
        use_cudnn (bool): If ``True``, this function uses cuDNN if available.
        use_bi_direction (bool): If ``True``, this function uses Bi-directional
            LSTM.

    Returns:
        tuple: This functions returns a tuple concaining three elements,
            ``hy``, ``cy`` and ``ys``.
            - ``hy`` is an updated hidden states whose shape is same as ``hx``.
            - ``cy`` is an updated cell states whose shape is same as ``cx``.
            - ``ys`` is a list of :class:`~chainer.Variable` . Each element
              ``ys[t]`` holds hidden states of the last layer corresponding
              to an input ``xs[t]``. Its shape is ``(B_t, N)`` where ``B_t`` is
              mini-batch size for time ``t``, and ``N`` is size of hidden
              units. Note that ``B_t`` is the same value as ``xs[t]``.

    .. seealso::

       :func:`chainer.functions.n_step_lstm`
       :func:`chainer.functions.n_step_bilstm`

    """

    xp = cuda.get_array_module(hx, hx.data)

    if use_cudnn and xp is not numpy and cuda.cudnn_enabled and \
       _cudnn_version >= 5000:
        states = get_random_state().create_dropout_states(dropout_ratio)
        # flatten all input variables
        inputs = tuple(
            itertools.chain((hx, cx), itertools.chain.from_iterable(ws),
                            itertools.chain.from_iterable(bs), xs))
        if use_bi_direction:
            rnn = NStepBiLSTM(n_layers, states, train=train)
        else:
            rnn = NStepLSTM(n_layers, states, train=train)

        ret = rnn(*inputs)
        hy, cy = ret[:2]
        ys = ret[2:]
        return hy, cy, ys

    else:
        direction = 2 if use_bi_direction else 1
        split_size = n_layers * direction
        hx = split_axis.split_axis(hx, split_size, axis=0, force_tuple=True)
        hx = [reshape.reshape(h, h.shape[1:]) for h in hx]
        cx = split_axis.split_axis(cx, split_size, axis=0, force_tuple=True)
        cx = [reshape.reshape(c, c.shape[1:]) for c in cx]

        xws = [_stack_weight([w[2], w[0], w[1], w[3]]) for w in ws]
        hws = [_stack_weight([w[6], w[4], w[5], w[7]]) for w in ws]
        xbs = [_stack_weight([b[2], b[0], b[1], b[3]]) for b in bs]
        hbs = [_stack_weight([b[6], b[4], b[5], b[7]]) for b in bs]

        xs_next = xs
        hy = []
        cy = []
        for layer in six.moves.range(n_layers):

            def _one_directional_loop(di):
                # di=0, forward LSTM
                # di=1, backward LSTM
                h_list = []
                c_list = []
                layer_idx = direction * layer + di
                h = hx[layer_idx]
                c = cx[layer_idx]
                if di == 0:
                    xs_list = xs_next
                else:
                    xs_list = reversed(xs_next)
                for x in xs_list:
                    batch = x.shape[0]
                    if h.shape[0] > batch:
                        h, h_rest = split_axis.split_axis(h, [batch], axis=0)
                        c, c_rest = split_axis.split_axis(c, [batch], axis=0)
                    else:
                        h_rest = None
                        c_rest = None

                    if layer != 0:
                        x = dropout.dropout(x,
                                            ratio=dropout_ratio,
                                            train=train)
                    lstm_in = linear.linear(x, xws[layer_idx],
                                            xbs[layer_idx]) + \
                        linear.linear(h, hws[layer_idx], hbs[layer_idx])

                    c_bar, h_bar = lstm.lstm(c, lstm_in)
                    if h_rest is not None:
                        h = concat.concat([h_bar, h_rest], axis=0)
                        c = concat.concat([c_bar, c_rest], axis=0)
                    else:
                        h = h_bar
                        c = c_bar
                    h_list.append(h_bar)
                    c_list.append(c_bar)
                return h, c, h_list, c_list

            h, c, h_forward, c_forward = _one_directional_loop(di=0)
            hy.append(h)
            cy.append(c)

            if use_bi_direction:
                # BiLSTM
                h, c, h_backward, c_backward = _one_directional_loop(di=1)
                hy.append(h)
                cy.append(c)

                h_backward.reverse()
                # concat
                xs_next = [
                    concat.concat([hfi, hbi], axis=1)
                    for (hfi, hbi) in zip(h_forward, h_backward)
                ]
            else:
                # Uni-directional RNN
                xs_next = h_forward

        ys = xs_next
        hy = stack.stack(hy)
        cy = stack.stack(cy)
        return hy, cy, tuple(ys)
示例#51
0
def n_step_gru_base(n_layers, dropout_ratio, hx, ws, bs, xs,
                    use_bi_direction, **kwargs):
    """n_step_gru_base(n_layers, dropout_ratio, hx, ws, bs, xs, use_bi_direction)

    Base function for Stack GRU/BiGRU functions.

    This function is used at  :func:`chainer.functions.n_step_bigru` and
    :func:`chainer.functions.n_step_gru`.
    This function's behavior depends on argument ``use_bi_direction``.

    .. warning::

       ``train`` and ``use_cudnn`` arguments are not supported anymore since
       v2.
       Instead, use ``chainer.using_config('train', train)`` and
       ``chainer.using_config('use_cudnn', use_cudnn)`` respectively.
       See :func:`chainer.using_config`.

    Args:
        n_layers(int): Number of layers.
        dropout_ratio(float): Dropout ratio.
        hx (chainer.Variable): Variable holding stacked hidden states.
            Its shape is ``(S, B, N)`` where ``S`` is number of layers and is
            equal to ``n_layers``, ``B`` is mini-batch size, and ``N`` is
            dimension of hidden units. Because of bi-direction, the
            first dimension length is ``2S``.
        ws (list of list of chainer.Variable): Weight matrices. ``ws[i]``
            represents weights for i-th layer.
            Each ``ws[i]`` is a list containing six matrices.
            ``ws[i][j]`` is corresponding with ``W_j`` in the equation.
            Only ``ws[0][j]`` where ``0 <= j < 3`` is ``(I, N)`` shape as they
            are multiplied with input variables. All other matrices has
            ``(N, N)`` shape.
        bs (list of list of chainer.Variable): Bias vectors. ``bs[i]``
            represnents biases for i-th layer.
            Each ``bs[i]`` is a list containing six vectors.
            ``bs[i][j]`` is corresponding with ``b_j`` in the equation.
            Shape of each matrix is ``(N,)`` where ``N`` is dimension of
            hidden units.
        xs (list of chainer.Variable): A list of :class:`~chainer.Variable`
            holding input values. Each element ``xs[t]`` holds input value
            for time ``t``. Its shape is ``(B_t, I)``, where ``B_t`` is
            mini-batch size for time ``t``, and ``I`` is size of input units.
            Note that this functions supports variable length sequences.
            When sequneces has different lengths, sort sequences in descending
            order by length, and transpose the sorted sequence.
            :func:`~chainer.functions.transpose_sequence` transpose a list
            of :func:`~chainer.Variable` holding sequence.
            So ``xs`` needs to satisfy
            ``xs[t].shape[0] >= xs[t + 1].shape[0]``.
        activation (str): Activation function name.
            Please select ``tanh`` or ``relu``.
        use_bi_direction (bool): If ``True``, this function uses
            Bi-direction GRU.

    .. seealso::
       :func:`chainer.functions.n_step_rnn`
       :func:`chainer.functions.n_step_birnn`

    """  # NOQA
    argument.check_unexpected_kwargs(
        kwargs, train='train argument is not supported anymore. '
        'Use chainer.using_config',
        use_cudnn='use_cudnn argument is not supported anymore. '
        'Use chainer.using_config')
    argument.assert_kwargs_empty(kwargs)

    xp = cuda.get_array_module(hx, hx.data)

    if xp is not numpy and chainer.should_use_cudnn('>=auto', 5000):
        states = get_random_state().create_dropout_states(dropout_ratio)
        # flatten all input variables
        inputs = tuple(itertools.chain(
            (hx, ),
            itertools.chain.from_iterable(ws),
            itertools.chain.from_iterable(bs),
            xs))
        if use_bi_direction:
            rnn = NStepBiGRU(n_layers, states)
        else:
            rnn = NStepGRU(n_layers, states)

        ret = rnn(*inputs)
        hy, = ret[:1]
        ys = ret[1:]
        return hy, ys

    else:
        direction = 2 if use_bi_direction else 1
        hx = split_axis.split_axis(hx, n_layers * direction, axis=0,
                                   force_tuple=True)
        hx = [reshape.reshape(h, h.shape[1:]) for h in hx]

        xws = [concat.concat([w[0], w[1], w[2]], axis=0) for w in ws]
        hws = [concat.concat([w[3], w[4], w[5]], axis=0) for w in ws]
        xbs = [concat.concat([b[0], b[1], b[2]], axis=0) for b in bs]
        hbs = [concat.concat([b[3], b[4], b[5]], axis=0) for b in bs]

        xs_next = xs
        hy = []
        for layer in six.moves.range(n_layers):

            def _one_directional_loop(di):
                # di=0, forward GRU
                # di=1, backward GRU
                xs_list = xs_next if di == 0 else reversed(xs_next)
                layer_idx = direction * layer + di
                h = hx[layer_idx]
                h_list = []
                for x in xs_list:
                    batch = x.shape[0]
                    if h.shape[0] > batch:
                        h, h_rest = split_axis.split_axis(h, [batch], axis=0)
                    else:
                        h_rest = None

                    if layer > 0:
                        x = dropout.dropout(x, ratio=dropout_ratio)

                    gru_x = linear.linear(x, xws[layer_idx], xbs[layer_idx])
                    gru_h = linear.linear(h, hws[layer_idx], hbs[layer_idx])

                    W_r_x, W_z_x, W_x = split_axis.split_axis(gru_x, 3, axis=1)
                    U_r_h, U_z_h, U_x = split_axis.split_axis(gru_h, 3, axis=1)

                    r = sigmoid.sigmoid(W_r_x + U_r_h)
                    z = sigmoid.sigmoid(W_z_x + U_z_h)
                    h_bar = tanh.tanh(W_x + r * U_x)
                    h_bar = (1 - z) * h_bar + z * h
                    if h_rest is not None:
                        h = concat.concat([h_bar, h_rest], axis=0)
                    else:
                        h = h_bar
                    h_list.append(h_bar)
                return h, h_list

            # Forward GRU
            h, h_forward = _one_directional_loop(di=0)
            hy.append(h)

            if use_bi_direction:
                # Backward GRU
                h, h_backward = _one_directional_loop(di=1)
                h_backward.reverse()
                # Concat
                xs_next = [concat.concat([hfi, hbi], axis=1) for (hfi, hbi) in
                           six.moves.zip(h_forward, h_backward)]
                hy.append(h)
            else:
                # Uni-directional GRU
                xs_next = h_forward

        ys = xs_next
        hy = stack.stack(hy)
        return hy, tuple(ys)
示例#52
0
def n_step_lstm(
        n_layers, dropout_ratio, hx, cx, ws, bs, xs, train=True,
        use_cudnn=True):
    """Stacked Long Short-Term Memory function for sequence inputs.

    This function calculates stacked LSTM with sequences. This function gets
    an initial hidden state :math:`h_0`, an initial cell state :math:`c_0`,
    an input sequence :math:`x`, weight matrices :math:`W`, and bias vectors
    :math:`b`.
    This function calculates hidden states :math:`h_t` and :math:`c_t` for each
    time :math:`t` from input :math:`x_t`.

    .. math::

       i_t &= \\sigma(W_0 x_t + W_4 h_{t-1} + b_0 + b_4) \\\\
       f_t &= \\sigma(W_1 x_t + W_5 h_{t-1} + b_1 + b_5) \\\\
       o_t &= \\sigma(W_2 x_t + W_6 h_{t-1} + b_2 + b_6) \\\\
       a_t &= \\tanh(W_3 x_t + W_7 h_{t-1} + b_3 + b_7) \\\\
       c_t &= f_t \\dot c_{t-1} + i_t \\dot a_t \\\\
       h_t &= o_t \\dot \\tanh(c_t)

    As the function accepts a sequence, it calculates :math:`h_t` for all
    :math:`t` with one call. Eight weight matrices and eight bias vectors are
    required for each layers. So, when :math:`S` layers exists, you need to
    prepare :math:`8S` weigth matrices and :math:`8S` bias vectors.

    If the number of layers ``n_layers`` is greather than :math:`1`, input
    of ``k``-th layer is hidden state ``h_t`` of ``k-1``-th layer.
    Note that all input variables except first layer may have different shape
    from the first layer.

    Args:
        n_layers(int): Number of layers.
        dropout_ratio(float): Dropout ratio.
        hx (chainer.Variable): Variable holding stacked hidden states.
            Its shape is ``(S, B, N)`` where ``S`` is number of layers and is
            equal to ``n_layers``, ``B`` is mini-batch size, and ``N`` is
            dimention of hidden units.
        cx (chainer.Variable): Variable holding stacked cell states.
            It has the same shape as ``hx``.
        ws (list of list of chainer.Variable): Weight matrices. ``ws[i]``
            represents weights for i-th layer.
            Each ``ws[i]`` is a list containing eight matrices.
            ``ws[i][j]`` is corresponding with ``W_j`` in the equation.
            Only ``ws[0][j]`` where ``0 <= j < 4`` is ``(I, N)`` shape as they
            are multiplied with input variables. All other matrices has
            ``(N, N)`` shape.
        bs (list of list of chainer.Variable): Bias vectors. ``bs[i]``
            represnents biases for i-th layer.
            Each ``bs[i]`` is a list containing eight vectors.
            ``bs[i][j]`` is corresponding with ``b_j`` in the equation.
            Shape of each matrix is ``(N,)`` where ``N`` is dimention of
            hidden units.
        xs (list of chainer.Variable): A list of :class:`~chainer.Variable`
            holding input values. Each element ``xs[t]`` holds input value
            for time ``t``. Its shape is ``(B_t, I)``, where ``B_t`` is
            mini-batch size for time ``t``, and ``I`` is size of input units.
            Note that this functions supports variable length sequences.
            When sequneces has different lengths, sort sequences in descending
            order by length, and transpose the sorted sequence.
            :func:`~chainer.functions.transpose_sequence` transpose a list
            of :func:`~chainer.Variable` holding sequence.
            So ``xs`` needs to satisfy
            ``xs[t].shape[0] >= xs[t + 1].shape[0]``.
        train (bool): If ``True``, this function executes dropout.
        use_cudnn (bool): If ``True``, this function uses cuDNN if available.

    Returns:
        tuple: This functions returns a tuple concaining three elements,
            ``hy``, ``cy`` and ``ys``.

            - ``hy`` is an updated hidden states whose shape is same as ``hx``.
            - ``cy`` is an updated cell states whose shape is same as ``cx``.
            - ``ys`` is a list of :class:`~chainer.Variable` . Each element
              ``ys[t]`` holds hidden states of the last layer corresponding
              to an input ``xs[t]``. Its shape is ``(B_t, N)`` where ``B_t`` is
              mini-batch size for time ``t``, and ``N`` is size of hidden
              units. Note that ``B_t`` is the same value as ``xs[t]``.

    .. seealso::

       :func:`chainer.functions.lstm`

    """

    xp = cuda.get_array_module(hx, hx.data)

    if use_cudnn and xp is not numpy and cuda.cudnn_enabled and \
       _cudnn_version >= 5000:
        states = get_random_state().create_dropout_states(dropout_ratio)
        # flatten all input variables
        inputs = tuple(itertools.chain(
            (hx, cx),
            itertools.chain.from_iterable(ws),
            itertools.chain.from_iterable(bs),
            xs))
        rnn = NStepLSTM(n_layers, states, train=train)
        ret = rnn(*inputs)
        hy, cy = ret[:2]
        ys = ret[2:]
        return hy, cy, ys

    else:
        hx = split_axis.split_axis(hx, n_layers, axis=0, force_tuple=True)
        hx = [reshape.reshape(h, h.shape[1:]) for h in hx]
        cx = split_axis.split_axis(cx, n_layers, axis=0, force_tuple=True)
        cx = [reshape.reshape(c, c.shape[1:]) for c in cx]

        xws = [_stack_weight([w[2], w[0], w[1], w[3]]) for w in ws]
        hws = [_stack_weight([w[6], w[4], w[5], w[7]]) for w in ws]
        xbs = [_stack_weight([b[2], b[0], b[1], b[3]]) for b in bs]
        hbs = [_stack_weight([b[6], b[4], b[5], b[7]]) for b in bs]

        ys = []
        for x in xs:
            batch = x.shape[0]
            h_next = []
            c_next = []
            for layer in six.moves.range(n_layers):
                h = hx[layer]
                c = cx[layer]
                if h.shape[0] > batch:
                    h, h_rest = split_axis.split_axis(h, [batch], axis=0)
                    c, c_rest = split_axis.split_axis(c, [batch], axis=0)
                else:
                    h_rest = None

                x = dropout.dropout(x, ratio=dropout_ratio, train=train)
                h = dropout.dropout(h, ratio=dropout_ratio, train=train)
                lstm_in = linear.linear(x, xws[layer], xbs[layer]) + \
                    linear.linear(h, hws[layer], hbs[layer])

                c_bar, h_bar = lstm.lstm(c, lstm_in)
                if h_rest is not None:
                    h = concat.concat([h_bar, h_rest], axis=0)
                    c = concat.concat([c_bar, c_rest], axis=0)
                else:
                    h = h_bar
                    c = c_bar
                h_next.append(h)
                c_next.append(c)
                x = h_bar
            hx = h_next
            cx = c_next
            ys.append(x)

        hy = stack.stack(hx)
        cy = stack.stack(cx)
        return hy, cy, tuple(ys)
def n_step_rnn_base(n_layers, dropout_ratio, hx, ws, bs, xs, activation,
                    use_bi_direction, **kwargs):
    """n_step_rnn_base(n_layers, dropout_ratio, hx, ws, bs, xs, activation, use_bi_direction)

    Base function for Stack RNN/BiRNN functions.

    This function is used at  :func:`chainer.functions.n_step_birnn` and
    :func:`chainer.functions.n_step_rnn`.
    This function's behavior depends on following arguments,
    ``activation`` and ``use_bi_direction``.

    .. warning::

       ``train`` and ``use_cudnn`` arguments are not supported anymore since
       v2.
       Instead, use ``chainer.using_config('train', train)`` and
       ``chainer.using_config('use_cudnn', use_cudnn)`` respectively.
       See :func:`chainer.using_config`.

    Args:
        n_layers(int): Number of layers.
        dropout_ratio(float): Dropout ratio.
        hx (chainer.Variable): Variable holding stacked hidden states.
            Its shape is ``(S, B, N)`` where ``S`` is number of layers and is
            equal to ``n_layers``, ``B`` is mini-batch size, and ``N`` is
            dimention of hidden units.
        ws (list of list of chainer.Variable): Weight matrices. ``ws[i]``
            represents weights for i-th layer.
            Each ``ws[i]`` is a list containing two matrices.
            ``ws[i][j]`` is corresponding with ``W_j`` in the equation.
            Only ``ws[0][j]`` where ``0 <= j < 1`` is ``(I, N)`` shape as they
            are multiplied with input variables. All other matrices has
            ``(N, N)`` shape.
        bs (list of list of chainer.Variable): Bias vectors. ``bs[i]``
            represnents biases for i-th layer.
            Each ``bs[i]`` is a list containing two vectors.
            ``bs[i][j]`` is corresponding with ``b_j`` in the equation.
            Shape of each matrix is ``(N,)`` where ``N`` is dimention of
            hidden units.
        xs (list of chainer.Variable): A list of :class:`~chainer.Variable`
            holding input values. Each element ``xs[t]`` holds input value
            for time ``t``. Its shape is ``(B_t, I)``, where ``B_t`` is
            mini-batch size for time ``t``, and ``I`` is size of input units.
            Note that this functions supports variable length sequences.
            When sequneces has different lengths, sort sequences in descending
            order by length, and transpose the sorted sequence.
            :func:`~chainer.functions.transpose_sequence` transpose a list
            of :func:`~chainer.Variable` holding sequence.
            So ``xs`` needs to satisfy
            ``xs[t].shape[0] >= xs[t + 1].shape[0]``.
        activation (str): Activation function name.
            Please select ``tanh`` or ``relu``.
        use_bi_direction (bool): If ``True``, this function uses
            Bi-directional RNN.

    Returns:
        tuple: This functions returns a tuple concaining three elements,
            ``hy`` and ``ys``.

            - ``hy`` is an updated hidden states whose shape is same as ``hx``.
            - ``ys`` is a list of :class:`~chainer.Variable` . Each element
              ``ys[t]`` holds hidden states of the last layer corresponding
              to an input ``xs[t]``. Its shape is ``(B_t, N)`` where ``B_t``
              is mini-batch size for time ``t``, and ``N`` is size of hidden
              units. Note that ``B_t`` is the same value as ``xs[t]``.

    .. seealso::
       :func:`chainer.functions.n_step_rnn`
       :func:`chainer.functions.n_step_birnn`

    """  # NOQA

    argument.check_unexpected_kwargs(
        kwargs,
        train='train argument is not supported anymore. '
        'Use chainer.using_config',
        use_cudnn='use_cudnn argument is not supported anymore. '
        'Use chainer.using_config')
    argument.assert_kwargs_empty(kwargs)

    activation_list = ['tanh', 'relu']
    if activation not in activation_list:
        candidate = ','.join(activation_list)
        raise ValueError('Invalid activation: "%s". Please select from [%s]' %
                         (activation, candidate))

    xp = cuda.get_array_module(hx)

    if xp is not numpy and chainer.should_use_cudnn('>=auto', 5000):
        states = get_random_state().create_dropout_states(dropout_ratio)
        # flatten all input variables
        inputs = tuple(
            itertools.chain((hx, ), itertools.chain.from_iterable(ws),
                            itertools.chain.from_iterable(bs), xs))
        if use_bi_direction:
            # Bi-directional RNN
            if activation == 'tanh':
                rnn = NStepBiRNNTanh(n_layers, states)
            elif activation == 'relu':
                rnn = NStepBiRNNReLU(n_layers, states)
        else:
            # Uni-directional RNN
            if activation == 'tanh':
                rnn = NStepRNNTanh(n_layers, states)
            elif activation == 'relu':
                rnn = NStepRNNReLU(n_layers, states)

        ret = rnn(*inputs)
        hy, = ret[:1]
        ys = ret[1:]
        return hy, ys

    else:

        direction = 2 if use_bi_direction else 1
        hx = split_axis.split_axis(hx,
                                   n_layers * direction,
                                   axis=0,
                                   force_tuple=True)
        hx = [reshape.reshape(h, h.shape[1:]) for h in hx]

        xws = [_stack_weight([w[0]]) for w in ws]
        hws = [_stack_weight([w[1]]) for w in ws]
        xbs = [_stack_weight([b[0]]) for b in bs]
        hbs = [_stack_weight([b[1]]) for b in bs]

        xs_next = xs
        hy = []
        for layer in six.moves.range(n_layers):

            def _one_directional_loop(di):
                # di=0, forward RNN
                # di=1, backward RNN
                xs_list = xs_next if di == 0 else reversed(xs_next)
                layer_idx = direction * layer + di
                h = hx[layer_idx]
                h_list = []
                for x in xs_list:
                    batch = x.shape[0]
                    if h.shape[0] > batch:
                        h, h_rest = split_axis.split_axis(h, [batch], axis=0)
                    else:
                        h_rest = None

                    if layer > 0:
                        x = dropout.dropout(x, ratio=dropout_ratio)

                    rnn_in = (
                        linear.linear(x, xws[layer_idx], xbs[layer_idx]) +
                        linear.linear(h, hws[layer_idx], hbs[layer_idx]))
                    if activation == 'tanh':
                        h_bar = tanh.tanh(rnn_in)
                    elif activation == 'relu':
                        h_bar = relu.relu(rnn_in)

                    if h_rest is not None:
                        h = concat.concat([h_bar, h_rest], axis=0)
                    else:
                        h = h_bar
                    h_list.append(h_bar)
                return h, h_list

            # Forward RNN
            h, h_forward = _one_directional_loop(di=0)
            hy.append(h)

            if use_bi_direction:
                # Backward RNN
                h, h_backward = _one_directional_loop(di=1)
                h_backward.reverse()
                # Concat
                xs_next = [
                    concat.concat([hfi, hbi], axis=1)
                    for (hfi, hbi) in six.moves.zip(h_forward, h_backward)
                ]
                hy.append(h)
            else:
                # Uni-directional RNN
                xs_next = h_forward

        ys = xs_next
        hy = stack.stack(hy)
        return hy, tuple(ys)