def check_forward(self, log_pi_data, tau):
        log_pi = chainer.Variable(log_pi_data)
        y = functions.gumbel_softmax(log_pi, tau=tau)

        # Only checks dtype and shape because its result contains noise
        self.assertEqual(y.dtype, numpy.float32)
        self.assertEqual(y.shape, log_pi.shape)
        self.assertEqual(cuda.get_array_module(y),
                         cuda.get_array_module(log_pi))
示例#2
0
    def check_forward(self, log_pi_data, tau):
        log_pi = chainer.Variable(log_pi_data)
        y = functions.gumbel_softmax(log_pi, tau=tau)

        # Only checks dtype and shape because its result contains noise
        self.assertEqual(y.dtype, numpy.float32)
        self.assertEqual(y.shape, log_pi.shape)
        self.assertEqual(
            cuda.get_array_module(y),
            cuda.get_array_module(log_pi))
示例#3
0
文件: train.py 项目: GAIMJKP/models-2
def test(iterator, gpu, timesteps, encoder, decoder, rel_send, rel_rec,
         edge_types, temp, var):
    nll_test = []
    kl_test = []
    edge_accuracies = []
    node_mses = []

    chainer.config.train = False
    chainer.config.enable_backprop = False

    while True:
        inputs = iterator.next()
        node_features, edge_labels = dataset.concat_examples(inputs,
                                                             device=gpu)

        data_encoder = node_features[:, :, :timesteps, :]
        data_decoder = node_features[:, :, -timesteps:, :]

        # logits: [batch_size, num_edges, edge_types]
        logits = encoder(data_encoder, rel_send,
                         rel_rec)  # inverse func. of softmax
        edges = F.gumbel_softmax(logits, tau=temp, axis=2)
        edge_probs = F.softmax(logits, axis=2)
        # edges, edge_probs: [batch_size, num_edges, edge_types]

        # validation output uses teacher forcing
        output = decoder(data_decoder, edges, rel_rec, rel_send, 1)

        target = data_decoder[:, :, 1:, :]
        num_nodes = node_features.shape[1]

        loss_nll = get_nll_gaussian(output, target, var)
        loss_kl = get_kl_categorical_uniform(edge_probs, num_nodes, edge_types)

        nll_test.append(float(loss_nll.array))
        kl_test.append(float(loss_kl.array))

        edge_accuracy = get_edge_accuracy(logits.array, edge_labels)
        edge_accuracies.append(edge_accuracy)

        node_mse = float(F.mean_squared_error(output, target).array)
        node_mses.append(node_mse)

        if iterator.is_new_epoch:
            break

    put_log(iterator.epoch, np.mean(nll_test), np.mean(kl_test),
            np.mean(edge_accuracies), np.mean(node_mses), 'test')

    chainer.config.train = True
    chainer.config.enable_backprop = True
示例#4
0
文件: net.py 项目: souravsingh/models
    def predict(self, xs):
        # Encoding
        logits, exs = self._encode(xs)

        # Discretization
        D = F.gumbel_softmax(logits, self.tau, axis=2)
        gumbel_output = D.reshape(-1, self.M * self.K)
        with chainer.no_backprop_mode():
            maxp = F.mean(F.max(D, axis=2))
            reporter.report({'maxp': maxp.data}, self)

        # Decoding
        y_hat = self._decode(gumbel_output)
        return y_hat, exs
示例#5
0
文件: net.py 项目: GAIMJKP/models-2
    def predict(self, xs):
        # Encoding
        logits, exs = self._encode(xs)

        # Discretization
        D = F.gumbel_softmax(logits, self.tau, axis=2)
        gumbel_output = D.reshape(-1, self.M * self.K)
        with chainer.no_backprop_mode():
            maxp = F.mean(F.max(D, axis=2))
            reporter.report({'maxp': maxp.data}, self)

        # Decoding
        y_hat = self._decode(gumbel_output)
        return y_hat, exs
示例#6
0
def test(iterator, gpu, timesteps, encoder, decoder, rel_send, rel_rec, edge_types, temp, var):
    nll_test = []
    kl_test = []
    edge_accuracies = []
    node_mses = []

    chainer.config.train = False
    chainer.config.enable_backprop = False

    while True:
        inputs = iterator.next()
        node_features, edge_labels = dataset.concat_examples(inputs, device=gpu)

        data_encoder = node_features[:, :, :timesteps, :]
        data_decoder = node_features[:, :, -timesteps:, :]

        # logits: [batch_size, num_edges, edge_types]
        logits = encoder(data_encoder, rel_send, rel_rec)  # inverse func. of softmax
        edges = F.gumbel_softmax(logits, tau=temp, axis=2)
        edge_probs = F.softmax(logits, axis=2)
        # edges, edge_probs: [batch_size, num_edges, edge_types]

        # validation output uses teacher forcing
        output = decoder(data_decoder, edges, rel_rec, rel_send, 1)

        target = data_decoder[:, :, 1:, :]
        num_nodes = node_features.shape[1]

        loss_nll = get_nll_gaussian(output, target, var)
        loss_kl = get_kl_categorical_uniform(edge_probs, num_nodes, edge_types)

        nll_test.append(float(loss_nll.array))
        kl_test.append(float(loss_kl.array))

        edge_accuracy = get_edge_accuracy(logits.array, edge_labels)
        edge_accuracies.append(edge_accuracy)

        node_mse = float(F.mean_squared_error(output, target).array)
        node_mses.append(node_mse)

        if iterator.is_new_epoch:
            break

    put_log(iterator.epoch, np.mean(nll_test), np.mean(kl_test),
            np.mean(edge_accuracies), np.mean(node_mses), 'test')

    chainer.config.train = True
    chainer.config.enable_backprop = True
示例#7
0
def get_dealer_sampling(N_pic=100, imgH=64, imgW=64, N_card=4):

    thres = [0.99995, 0.9999, 0.9998, 0.9995]  #*512で13,26,52,131個相当

    #<ランダム点画像の生成>
    img_r = xp.random.rand(N_pic,
                           imgW * imgH).astype(np.float32)  #100枚分の0-1乱数作成
    img_p = xp.zeros(
        (N_card, N_pic, imgW * imgH)).astype(np.float32)  #4*100枚分のイメージメモリ確保

    for i, thre in enumerate(thres):  #閾値よりも高いものだけ1を代入
        img_p[i][img_r >= thre] = 1

    #点画像変形 (N_card, N_pic, imgW*imgH,) ⇒ (N_pic, imgW*imgH, N_card)
    img_p = chainer.Variable(img_p.transpose((1, 2, 0)))

    #<サンプリング係数の生成>
    #100個の「1」を作成
    x_one = xp.ones((N_pic, 1), dtype=np.float32)
    #「1」をディーラーを通したあとsoftmaxで0-1確率にする
    card_prob = F.softmax(Md['de'](x_one))
    #gumbel_softmaxを通してサンプリング
    card_gum = F.gumbel_softmax(F.log(card_prob), tau=0.2)
    #サンプリング係数の画像化 (N_pic, N_card) ⇒ (N_pic, imgW*imgH, N_card)
    card_gum_b = F.broadcast_to(F.reshape(card_gum, (N_pic, 1, N_card)),
                                img_p.shape)

    #<ランダム点画像とサンプリング係数画像の合成>
    #ランダム点画像とサンプリング係数をかけて、合成(sum)し、2次元画像へ変形
    img_p_sum = F.reshape(F.sum(img_p * card_gum_b, axis=2),
                          (N_pic, 1, imgH, imgW))

    #点⇒ガウス球へ変形
    img_core = Md['decon_core'](img_p_sum) * 255
    img_core = F.broadcast_to(img_core, (N_pic, 3, imgH, imgW))

    return img_core
示例#8
0
    chainer.config.train = False
    chainer.config.enable_backprop = False

    for i in range(5):
        inputs = test_iter.next()
        node_features, edge_labels = dataset.concat_examples(inputs,
                                                             device=args.gpu)

        data_encoder = node_features[:, :, :train_args['timesteps'], :]
        data_decoder = node_features[:, :, train_args['timesteps']:, :]

        # logits: [batch_size, num_edges, edge_types]
        logits = encoder(data_encoder, rel_send,
                         rel_rec)  # inverse func. of softmax
        edges = F.gumbel_softmax(logits, tau=train_args['temp'],
                                 axis=2)  # edge sampling
        edge_probs = F.softmax(logits, axis=2)
        # edges, edge_probs: [batch_size, num_edges, edge_types]

        # validation output uses teacher forcing
        output = decoder(data_decoder, edges, rel_rec, rel_send,
                         data_decoder.shape[2])

        fig = plt.figure()
        plt.tight_layout()
        plt.xlabel('x')
        plt.ylabel('y')
        plt.title(
            'transparent: given, solid: prediction, dashed: ground-truth')
        prop_cycle = plt.rcParams['axes.prop_cycle']
        colors = prop_cycle.by_key()['color']
示例#9
0
def train(
        iterator, gpu, encoder, decoder, enc_optim, dec_optim, rel_send, rel_rec, edge_types,
        temp, prediction_steps, var, out, benchmark, lr_decay, gamma):
    iter_i = 0
    edge_accuracies = []
    node_mses = []
    nll_train = []
    kl_train = []

    logger = logging.getLogger(__name__)

    while True:
        inputs = iterator.next()
        node_features, edge_labels = dataset.concat_examples(inputs, device=gpu)

        # logits: [batch_size, num_edges, edge_types]
        logits = encoder(node_features, rel_send, rel_rec)  # inverse func. of softmax
        edges = F.gumbel_softmax(logits, tau=temp, axis=2)
        edge_probs = F.softmax(logits, axis=2)
        # edges, edge_probs: [batch_size, num_edges, edge_types]

        if isinstance(decoder, decoders.MLPDecoder):
            output = decoder(
                node_features, edges, rel_rec, rel_send, prediction_steps)
        elif isinstance(decoder, decoders.RNNDecoder):
            output = decoder(
                node_features, edges, rel_rec, rel_send, 100,
                burn_in=True,
                burn_in_steps=args.timesteps - args.prediction_steps)

        target = node_features[:, :, 1:, :]
        num_nodes = node_features.shape[1]

        loss_nll = get_nll_gaussian(output, target, var)
        loss_kl = get_kl_categorical_uniform(edge_probs, num_nodes, edge_types)

        loss = loss_nll + loss_kl

        nll_train.append(float(loss_nll.array))
        kl_train.append(float(loss_kl.array))

        edge_accuracy = get_edge_accuracy(logits.array, edge_labels)
        edge_accuracies.append(edge_accuracy)

        node_mse = float(F.mean_squared_error(output, target).array)
        node_mses.append(node_mse)

        encoder.cleargrads()
        decoder.cleargrads()
        loss.backward()
        enc_optim.update()
        dec_optim.update()

        # Exit after 10 iterations when benchmark mode is ON
        iter_i += 1
        if benchmark:
            put_log(iterator.epoch, np.mean(nll_train), np.mean(kl_train),
                    np.mean(edge_accuracies), np.mean(node_mses))
            if iter_i == 10:
                exit()

        if iterator.is_new_epoch:
            break

    if not os.path.exists(os.path.join(out, 'graph.dot')):
        with open(os.path.join(out, 'graph.dot'), 'w') as o:
            g = computational_graph.build_computational_graph([loss])
            o.write(g.dump())

    if iterator.is_new_epoch:
        put_log(iterator.epoch, np.mean(nll_train), np.mean(kl_train), np.mean(edge_accuracies), np.mean(node_mses))
        serializers.save_npz(os.path.join(out, 'encoder_epoch-{}.npz'.format(iterator.epoch)), encoder)
        serializers.save_npz(os.path.join(out, 'decoder_epoch-{}.npz'.format(iterator.epoch)), decoder)
        serializers.save_npz(os.path.join(out, 'enc_optim_epoch-{}.npz'.format(iterator.epoch)), enc_optim)
        serializers.save_npz(os.path.join(out, 'dec_optim_epoch-{}.npz'.format(iterator.epoch)), dec_optim)

        if iterator.epoch % lr_decay == 0:
            enc_optim.alpha *= gamma
            dec_optim.alpha *= gamma
            logger.info('alpha of enc_optim: {}'.format(enc_optim.alpha))
            logger.info('alpha of dec_optim: {}'.format(dec_optim.alpha))
示例#10
0
文件: train.py 项目: GAIMJKP/models-2
def train(iterator, gpu, encoder, decoder, enc_optim, dec_optim, rel_send,
          rel_rec, edge_types, temp, prediction_steps, var, out, benchmark,
          lr_decay, gamma):
    iter_i = 0
    edge_accuracies = []
    node_mses = []
    nll_train = []
    kl_train = []

    logger = logging.getLogger(__name__)

    while True:
        inputs = iterator.next()
        node_features, edge_labels = dataset.concat_examples(inputs,
                                                             device=gpu)

        # logits: [batch_size, num_edges, edge_types]
        logits = encoder(node_features, rel_send,
                         rel_rec)  # inverse func. of softmax
        edges = F.gumbel_softmax(logits, tau=temp, axis=2)
        edge_probs = F.softmax(logits, axis=2)
        # edges, edge_probs: [batch_size, num_edges, edge_types]

        if isinstance(decoder, decoders.MLPDecoder):
            output = decoder(node_features, edges, rel_rec, rel_send,
                             prediction_steps)
        elif isinstance(decoder, decoders.RNNDecoder):
            output = decoder(node_features,
                             edges,
                             rel_rec,
                             rel_send,
                             100,
                             burn_in=True,
                             burn_in_steps=args.timesteps -
                             args.prediction_steps)

        target = node_features[:, :, 1:, :]
        num_nodes = node_features.shape[1]

        loss_nll = get_nll_gaussian(output, target, var)
        loss_kl = get_kl_categorical_uniform(edge_probs, num_nodes, edge_types)

        loss = loss_nll + loss_kl

        nll_train.append(float(loss_nll.array))
        kl_train.append(float(loss_kl.array))

        edge_accuracy = get_edge_accuracy(logits.array, edge_labels)
        edge_accuracies.append(edge_accuracy)

        node_mse = float(F.mean_squared_error(output, target).array)
        node_mses.append(node_mse)

        encoder.cleargrads()
        decoder.cleargrads()
        loss.backward()
        enc_optim.update()
        dec_optim.update()

        # Exit after 10 iterations when benchmark mode is ON
        iter_i += 1
        if benchmark:
            put_log(iterator.epoch, np.mean(nll_train), np.mean(kl_train),
                    np.mean(edge_accuracies), np.mean(node_mses))
            if iter_i == 10:
                exit()

        if iterator.is_new_epoch:
            break

    if not os.path.exists(os.path.join(out, 'graph.dot')):
        with open(os.path.join(out, 'graph.dot'), 'w') as o:
            g = computational_graph.build_computational_graph([loss])
            o.write(g.dump())

    if iterator.is_new_epoch:
        put_log(iterator.epoch, np.mean(nll_train), np.mean(kl_train),
                np.mean(edge_accuracies), np.mean(node_mses))
        serializers.save_npz(
            os.path.join(out, 'encoder_epoch-{}.npz'.format(iterator.epoch)),
            encoder)
        serializers.save_npz(
            os.path.join(out, 'decoder_epoch-{}.npz'.format(iterator.epoch)),
            decoder)
        serializers.save_npz(
            os.path.join(out, 'enc_optim_epoch-{}.npz'.format(iterator.epoch)),
            enc_optim)
        serializers.save_npz(
            os.path.join(out, 'dec_optim_epoch-{}.npz'.format(iterator.epoch)),
            dec_optim)

        if iterator.epoch % lr_decay == 0:
            enc_optim.alpha *= gamma
            dec_optim.alpha *= gamma
            logger.info('alpha of enc_optim: {}'.format(enc_optim.alpha))
            logger.info('alpha of dec_optim: {}'.format(dec_optim.alpha))