示例#1
0
文件: vgg.py 项目: delta2323/chainer
    def predict(self, images, oversample=True):
        """Computes all the probabilities of given images.

        Args:
            images (iterable of PIL.Image or numpy.ndarray): Input images.
            oversample (bool): If ``True``, it averages results across
                center, corners, and mirrors. Otherwise, it uses only the
                center.

        Returns:
            ~chainer.Variable: Output that contains the class probabilities
            of given images.

        """

        x = concat_examples([prepare(img, size=(256, 256)) for img in images])
        if oversample:
            x = imgproc.oversample(x, crop_dims=(224, 224))
        else:
            x = x[:, :, 16:240, 16:240]
        # Use no_backprop_mode to reduce memory consumption
        with function.no_backprop_mode():
            x = Variable(self.xp.asarray(x))
            y = self(x, layers=['prob'])['prob']
            if oversample:
                n = y.data.shape[0] // 10
                y_shape = y.data.shape[1:]
                y = reshape(y, (n, 10) + y_shape)
                y = sum(y, axis=1) / 10
        return y
示例#2
0
文件: vgg.py 项目: km-t/dcpython
    def predict(self, images, oversample=True):
        """Computes all the probabilities of given images.

        Args:
            images (iterable of PIL.Image or numpy.ndarray): Input images.
                When you specify a color image as a :class:`numpy.ndarray`,
                make sure that color order is RGB.
            oversample (bool): If ``True``, it averages results across
                center, corners, and mirrors. Otherwise, it uses only the
                center.

        Returns:
            ~chainer.Variable: Output that contains the class probabilities
            of given images.

        """

        x = concat_examples([prepare(img, size=(256, 256)) for img in images])
        if oversample:
            x = imgproc.oversample(x, crop_dims=(224, 224))
        else:
            x = x[:, :, 16:240, 16:240]
        # Use no_backprop_mode to reduce memory consumption
        with function.no_backprop_mode(), chainer.using_config('train', False):
            x = Variable(self.xp.asarray(x))
            y = self(x, layers=['prob'])['prob']
            if oversample:
                n = len(y) // 10
                y_shape = y.shape[1:]
                y = reshape(y, (n, 10) + y_shape)
                y = sum(y, axis=1) / 10
        return y
示例#3
0
    def predict(self, images, oversample=True):
        """Computes all the probabilities of given images.

        Args:
            images (iterable of PIL.Image or numpy.ndarray): Input images.
            oversample (bool): If ``True``, it averages results across
                center, corners, and mirrors. Otherwise, it uses only the
                center.

        Returns:
            ~chainer.Variable: Output that contains the class probabilities
            of given images.

        """

        x = concat_examples([prepare(img, size=(256, 256)) for img in images])
        if oversample:
            x = imgproc.oversample(x, crop_dims=(224, 224))
        else:
            x = x[:, :, 16:240, 16:240]
        # Set volatile option to ON to reduce memory consumption
        x = Variable(self.xp.asarray(x), volatile=flag.ON)
        y = self(x, layers=['prob'])['prob']
        if oversample:
            n = y.data.shape[0] // 10
            y_shape = y.data.shape[1:]
            y = reshape(y, (n, 10) + y_shape)
            y = sum(y, axis=1) / 10
        return y