示例#1
0
def _test_balanced_serial_iterator_no_batch_balancing():
    x = numpy.arange(8)
    t = numpy.asarray([0, 0, -1, 1, 1, 2, -1, 1])
    iterator = BalancedSerialIterator(NumpyTupleDataset(x, t),
                                      batch_size=9,
                                      labels=t,
                                      ignore_labels=-1,
                                      batch_balancing=False)
    # In this case, we have 3 examples of label=1.
    # When BalancedSerialIterator runs, all label examples are sampled 3 times
    # in one epoch.
    # Therefore, number of data is "augmented" as 9
    # 3 (number of label types) * 3 (number of maximum examples in one label)
    expect_N_augmented = 9
    assert iterator.N_augmented == expect_N_augmented
    # iterator.show_label_stats()  # we can show label stats

    batch = iterator.next()

    assert len(batch) == 9
    labels_batch = numpy.array([example[-1] for example in batch])

    assert numpy.sum(labels_batch == 0) == 3
    assert numpy.sum(labels_batch == 1) == 3
    assert numpy.sum(labels_batch == 2) == 3
示例#2
0
def _test_balanced_serial_iterator_with_batch_balancing():
    x = numpy.arange(8)
    t = numpy.asarray([0, 0, -1, 1, 1, 2, -1, 1])
    iterator = BalancedSerialIterator(NumpyTupleDataset(x, t),
                                      batch_size=3,
                                      labels=t,
                                      ignore_labels=-1,
                                      batch_balancing=True)
    expect_N_augmented = 9
    assert iterator.N_augmented == expect_N_augmented
    batch1 = iterator.next()
    batch2 = iterator.next()
    batch3 = iterator.next()
    for batch in [batch1, batch2, batch3]:
        assert len(batch) == 3
        labels_batch = numpy.array([example[-1] for example in batch])
        assert numpy.sum(labels_batch == 0) == 1
        assert numpy.sum(labels_batch == 1) == 1
        assert numpy.sum(labels_batch == 2) == 1
示例#3
0
def _test_balanced_serial_iterator_serialization_with_batch_balancing():
    x = numpy.arange(8)
    t = numpy.asarray([0, 0, -1, 1, 1, 2, -1, 1])
    iterator = BalancedSerialIterator(NumpyTupleDataset(x, t),
                                      batch_size=3,
                                      labels=t,
                                      ignore_labels=-1,
                                      batch_balancing=True)
    batch1 = iterator.next()  # NOQA
    batch2 = iterator.next()  # NOQA
    batch3 = iterator.next()  # NOQA

    assert iterator.current_position == 0
    assert iterator.epoch == 1
    assert iterator.is_new_epoch

    target = dict()
    iterator.serialize(DummySerializer(target))
    current_index_list_orig = dict()
    current_pos_orig = dict()
    for label, index_iterator in iterator.labels_iterator_dict.items():
        ii_label = 'index_iterator_{}'.format(label)
        current_index_list_orig[ii_label] = index_iterator.current_index_list
        current_pos_orig[ii_label] = index_iterator.current_pos

    iterator = BalancedSerialIterator(NumpyTupleDataset(x, t),
                                      batch_size=3,
                                      labels=t,
                                      ignore_labels=-1,
                                      batch_balancing=True)
    iterator.serialize(DummyDeserializer(target))
    assert iterator.current_position == 0
    assert iterator.epoch == 1
    assert iterator.is_new_epoch
    for label, index_iterator in iterator.labels_iterator_dict.items():
        ii_label = 'index_iterator_{}'.format(label)
        assert numpy.array_equal(index_iterator.current_index_list,
                                 current_index_list_orig[ii_label])
        assert index_iterator.current_pos == current_pos_orig[ii_label]
示例#4
0
def main():
    # Supported preprocessing/network list
    method_list = ['nfp', 'ggnn', 'schnet', 'weavenet', 'rsgcn', 'attention']
    label_names = D.get_tox21_label_names()
    iterator_type = ['serial', 'balanced']

    parser = argparse.ArgumentParser(
        description='Multitask Learning with Tox21.')
    parser.add_argument('--method',
                        '-m',
                        type=str,
                        choices=method_list,
                        default='nfp',
                        help='graph convolution model to use '
                        'as a predictor.')
    parser.add_argument('--label',
                        '-l',
                        type=str,
                        choices=label_names,
                        default='',
                        help='target label for logistic '
                        'regression. Use all labels if this option '
                        'is not specified.')
    parser.add_argument('--iterator-type',
                        type=str,
                        choices=iterator_type,
                        default='serial',
                        help='iterator type. If `balanced` '
                        'is specified, data is sampled to take same number of'
                        'positive/negative labels during training.')
    parser.add_argument('--eval-mode',
                        type=int,
                        default=1,
                        help='Evaluation mode.'
                        '0: only binary_accuracy is calculated.'
                        '1: binary_accuracy and ROC-AUC score is calculated')
    parser.add_argument('--conv-layers',
                        '-c',
                        type=int,
                        default=4,
                        help='number of convolution layers')
    parser.add_argument('--batchsize',
                        '-b',
                        type=int,
                        default=32,
                        help='batch size')
    parser.add_argument('--gpu',
                        '-g',
                        type=int,
                        default=-1,
                        help='GPU ID to use. Negative value indicates '
                        'not to use GPU and to run the code in CPU.')
    parser.add_argument('--out',
                        '-o',
                        type=str,
                        default='result',
                        help='path to output directory')
    parser.add_argument('--epoch',
                        '-e',
                        type=int,
                        default=10,
                        help='number of epochs')
    parser.add_argument('--unit-num',
                        '-u',
                        type=int,
                        default=16,
                        help='number of units in one layer of the model')
    parser.add_argument('--resume',
                        '-r',
                        type=str,
                        default='',
                        help='path to a trainer snapshot')
    parser.add_argument('--frequency',
                        '-f',
                        type=int,
                        default=-1,
                        help='Frequency of taking a snapshot')
    parser.add_argument('--protocol',
                        type=int,
                        default=2,
                        help='protocol version for pickle')
    parser.add_argument('--model-filename',
                        type=str,
                        default='classifier.pkl',
                        help='file name for pickled model')
    parser.add_argument('--num-data',
                        type=int,
                        default=-1,
                        help='Number of data to be parsed from parser.'
                        '-1 indicates to parse all data.')
    args = parser.parse_args()

    method = args.method
    if args.label:
        labels = args.label
        class_num = len(labels) if isinstance(labels, list) else 1
    else:
        labels = None
        class_num = len(label_names)

    # Dataset preparation
    print("labels : ", labels)
    print("num_data : ", args.num_data)
    train, val, _ = data.load_dataset(method, labels, num_data=args.num_data)
    #train data : 11757
    #len(train[0]) : 3
    #len(train[0][0]) : 34
    #len(train[0][1]) : 34
    #len(train[0][1][0]) : 34
    #len(train[0][1]) : 12 ?
    #import pdb;pdb.set_trace()
    #Network
    predictor_ = predictor.build_predictor(method, args.unit_num,
                                           args.conv_layers, class_num)

    iterator_type = args.iterator_type
    if iterator_type == 'serial':
        train_iter = I.SerialIterator(train, args.batchsize)
    elif iterator_type == 'balanced':
        if class_num > 1:
            raise ValueError('BalancedSerialIterator can be used with only one'
                             'label classification, please specify label to'
                             'be predicted by --label option.')
        train_iter = BalancedSerialIterator(train,
                                            args.batchsize,
                                            train.features[:, -1],
                                            ignore_labels=-1)
        train_iter.show_label_stats()
    else:
        raise ValueError('Invalid iterator type {}'.format(iterator_type))
    val_iter = I.SerialIterator(val,
                                args.batchsize,
                                repeat=False,
                                shuffle=False)

    classifier = Classifier(predictor_,
                            lossfun=F.sigmoid_cross_entropy,
                            metrics_fun=F.binary_accuracy,
                            device=args.gpu)

    optimizer = O.Adam()
    optimizer.setup(classifier)

    updater = training.StandardUpdater(train_iter,
                                       optimizer,
                                       device=args.gpu,
                                       converter=concat_mols)
    trainer = training.Trainer(updater, (args.epoch, 'epoch'), out=args.out)

    trainer.extend(
        E.Evaluator(val_iter,
                    classifier,
                    device=args.gpu,
                    converter=concat_mols))
    trainer.extend(E.LogReport())

    eval_mode = args.eval_mode
    if eval_mode == 0:
        trainer.extend(
            E.PrintReport([
                'epoch', 'main/loss', 'main/accuracy', 'validation/main/loss',
                'validation/main/accuracy', 'elapsed_time'
            ]))
    elif eval_mode == 1:
        train_eval_iter = I.SerialIterator(train,
                                           args.batchsize,
                                           repeat=False,
                                           shuffle=False)
        trainer.extend(
            ROCAUCEvaluator(train_eval_iter,
                            classifier,
                            eval_func=predictor_,
                            device=args.gpu,
                            converter=concat_mols,
                            name='train',
                            pos_labels=1,
                            ignore_labels=-1,
                            raise_value_error=False))
        # extension name='validation' is already used by `Evaluator`,
        # instead extension name `val` is used.
        trainer.extend(
            ROCAUCEvaluator(val_iter,
                            classifier,
                            eval_func=predictor_,
                            device=args.gpu,
                            converter=concat_mols,
                            name='val',
                            pos_labels=1,
                            ignore_labels=-1))
        trainer.extend(
            E.PrintReport([
                'epoch', 'main/loss', 'main/accuracy', 'train/main/roc_auc',
                'validation/main/loss', 'validation/main/accuracy',
                'val/main/roc_auc', 'elapsed_time'
            ]))
    else:
        raise ValueError('Invalid accfun_mode {}'.format(eval_mode))
    trainer.extend(E.ProgressBar(update_interval=10))
    frequency = args.epoch if args.frequency == -1 else max(1, args.frequency)
    trainer.extend(E.snapshot(), trigger=(frequency, 'epoch'))

    if args.resume:
        chainer.serializers.load_npz(args.resume, trainer)

    trainer.run()

    config = {
        'method': args.method,
        'conv_layers': args.conv_layers,
        'unit_num': args.unit_num,
        'labels': args.label
    }

    with open(os.path.join(args.out, 'config.json'), 'w') as o:
        o.write(json.dumps(config))

    classifier.save_pickle(os.path.join(args.out, args.model_filename),
                           protocol=args.protocol)
示例#5
0
def main():
    # Supported preprocessing/network list
    method_list = ['nfp', 'ggnn', 'schnet', 'weavenet', 'rsgcn']
    label_names = D.get_tox21_label_names()
    iterator_type = ['serial', 'balanced']

    parser = argparse.ArgumentParser(
        description='Multitask Learning with Tox21.')
    parser.add_argument('--method',
                        '-m',
                        type=str,
                        choices=method_list,
                        default='nfp',
                        help='graph convolution model to use '
                        'as a predictor.')
    parser.add_argument('--label',
                        '-l',
                        type=str,
                        choices=label_names,
                        default='',
                        help='target label for logistic '
                        'regression. Use all labels if this option '
                        'is not specified.')
    parser.add_argument('--iterator-type',
                        type=str,
                        choices=iterator_type,
                        default='serial',
                        help='iterator type. If `balanced` '
                        'is specified, data is sampled to take same number of'
                        'positive/negative labels during training.')
    parser.add_argument('--conv-layers',
                        '-c',
                        type=int,
                        default=4,
                        help='number of convolution layers')
    parser.add_argument('--batchsize',
                        '-b',
                        type=int,
                        default=128,
                        help='batch size')
    parser.add_argument('--gpu',
                        '-g',
                        type=int,
                        default=-1,
                        help='GPU ID to use. Negative value indicates '
                        'not to use GPU and to run the code in CPU.')
    parser.add_argument('--out',
                        '-o',
                        type=str,
                        default='result',
                        help='path to output directory')
    parser.add_argument('--epoch',
                        '-e',
                        type=int,
                        default=10,
                        help='number of epochs')
    parser.add_argument('--unit-num',
                        '-u',
                        type=int,
                        default=16,
                        help='number of units in one layer of the model')
    parser.add_argument('--resume',
                        '-r',
                        type=str,
                        default='',
                        help='path to a trainer snapshot')
    parser.add_argument('--frequency',
                        '-f',
                        type=int,
                        default=-1,
                        help='Frequency of taking a snapshot')
    args = parser.parse_args()

    method = args.method
    if args.label:
        labels = args.label
        class_num = len(labels) if isinstance(labels, list) else 1
    else:
        labels = None
        class_num = len(label_names)

    # Dataset preparation
    train, val, _ = data.load_dataset(method, labels)

    # Network
    predictor_ = predictor.build_predictor(method, args.unit_num,
                                           args.conv_layers, class_num)

    iterator_type = args.iterator_type
    if iterator_type == 'serial':
        train_iter = I.SerialIterator(train, args.batchsize)
    elif iterator_type == 'balanced':
        if class_num > 1:
            raise ValueError('BalancedSerialIterator can be used with only one'
                             'label classification, please specify label to'
                             'be predicted by --label option.')
        train_iter = BalancedSerialIterator(train,
                                            args.batchsize,
                                            train.features[:, -1],
                                            ignore_labels=-1)
        train_iter.show_label_stats()
    else:
        raise ValueError('Invalid iterator type {}'.format(iterator_type))
    val_iter = I.SerialIterator(val,
                                args.batchsize,
                                repeat=False,
                                shuffle=False)
    classifier = L.Classifier(predictor_,
                              lossfun=F.sigmoid_cross_entropy,
                              accfun=F.binary_accuracy)
    if args.gpu >= 0:
        chainer.cuda.get_device_from_id(args.gpu).use()
        classifier.to_gpu()

    optimizer = O.Adam()
    optimizer.setup(classifier)

    updater = training.StandardUpdater(train_iter,
                                       optimizer,
                                       device=args.gpu,
                                       converter=concat_mols)
    trainer = training.Trainer(updater, (args.epoch, 'epoch'), out=args.out)

    trainer.extend(
        E.Evaluator(val_iter,
                    classifier,
                    device=args.gpu,
                    converter=concat_mols))
    trainer.extend(E.snapshot(), trigger=(args.epoch, 'epoch'))
    trainer.extend(E.LogReport())
    trainer.extend(
        E.PrintReport([
            'epoch', 'main/loss', 'main/accuracy', 'validation/main/loss',
            'validation/main/accuracy', 'elapsed_time'
        ]))
    trainer.extend(E.ProgressBar(update_interval=10))
    frequency = args.epoch if args.frequency == -1 else max(1, args.frequency)
    trainer.extend(E.snapshot(), trigger=(frequency, 'epoch'))

    if args.resume:
        chainer.serializers.load_npz(args.resume, trainer)

    trainer.run()

    config = {
        'method': args.method,
        'conv_layers': args.conv_layers,
        'unit_num': args.unit_num,
        'labels': args.label
    }

    with open(os.path.join(args.out, 'config.json'), 'w') as o:
        o.write(json.dumps(config))
示例#6
0
def main():
    # Supported preprocessing/network list
    method_list = ['nfp', 'ggnn', 'schnet', 'weavenet', 'nfpdrop', 'ggnndrop']
    label_names = D.get_tox21_label_names() + ['pyridine']
    iterator_type = ['serial', 'balanced']

    parser = argparse.ArgumentParser(
        description='Multitask Learning with Tox21.')
    parser.add_argument('--method',
                        '-m',
                        type=str,
                        choices=method_list,
                        default='nfp',
                        help='graph convolution model to use '
                        'as a predictor.')
    parser.add_argument('--label',
                        '-l',
                        type=str,
                        choices=label_names,
                        default='',
                        help='target label for logistic '
                        'regression. Use all labels if this option '
                        'is not specified.')
    parser.add_argument('--iterator-type',
                        type=str,
                        choices=iterator_type,
                        default='serial',
                        help='iterator type. If `balanced` '
                        'is specified, data is sampled to take same number of'
                        'positive/negative labels during training.')
    parser.add_argument('--conv-layers',
                        '-c',
                        type=int,
                        default=4,
                        help='number of convolution layers')
    parser.add_argument('--n-layers',
                        type=int,
                        default=1,
                        help='number of mlp layers')
    parser.add_argument('--batchsize',
                        '-b',
                        type=int,
                        default=32,
                        help='batch size')
    parser.add_argument('--gpu',
                        '-g',
                        type=int,
                        default=-1,
                        help='GPU ID to use. Negative value indicates '
                        'not to use GPU and to run the code in CPU.')
    parser.add_argument('--out',
                        '-o',
                        type=str,
                        default='result',
                        help='path to output directory')
    parser.add_argument('--epoch',
                        '-e',
                        type=int,
                        default=10,
                        help='number of epochs')
    parser.add_argument('--unit-num',
                        '-u',
                        type=int,
                        default=16,
                        help='number of units in one layer of the model')
    parser.add_argument('--resume',
                        '-r',
                        type=str,
                        default='',
                        help='path to a trainer snapshot')
    parser.add_argument('--frequency',
                        '-f',
                        type=int,
                        default=-1,
                        help='Frequency of taking a snapshot')
    parser.add_argument('--dropout-ratio',
                        '-d',
                        type=float,
                        default=0.25,
                        help='dropout_ratio')
    parser.add_argument('--seed', type=int, default=0, help='random seed')
    parser.add_argument('--num-train',
                        type=int,
                        default=-1,
                        help='number of training data to be used, '
                        'negative value indicates use all train data')
    args = parser.parse_args()

    method = args.method
    if args.label:
        labels = args.label
        class_num = len(labels) if isinstance(labels, list) else 1
    else:
        labels = None
        class_num = len(label_names)

    # Dataset preparation
    train, val, test, train_smiles, val_smiles, test_smiles = data.load_dataset(
        method, labels)

    num_train = args.num_train  # 100
    if num_train > 0:
        # reduce size of train data
        seed = args.seed  # 0
        np.random.seed(seed)
        train_selected_label = np.random.permutation(np.arange(
            len(train)))[:num_train]
        print('num_train', num_train, len(train_selected_label),
              train_selected_label)
        train = NumpyTupleDataset(*train.features[train_selected_label, :])
    # Network
    predictor_ = predictor.build_predictor(method, args.unit_num,
                                           args.conv_layers, class_num,
                                           args.dropout_ratio, args.n_layers)

    iterator_type = args.iterator_type
    if iterator_type == 'serial':
        train_iter = I.SerialIterator(train, args.batchsize)
    elif iterator_type == 'balanced':
        if class_num > 1:
            raise ValueError('BalancedSerialIterator can be used with only one'
                             'label classification, please specify label to'
                             'be predicted by --label option.')
        train_iter = BalancedSerialIterator(train,
                                            args.batchsize,
                                            train.features[:, -1],
                                            ignore_labels=-1)
        train_iter.show_label_stats()
    else:
        raise ValueError('Invalid iterator type {}'.format(iterator_type))
    val_iter = I.SerialIterator(val,
                                args.batchsize,
                                repeat=False,
                                shuffle=False)
    classifier = L.Classifier(predictor_,
                              lossfun=F.sigmoid_cross_entropy,
                              accfun=F.binary_accuracy)
    if args.gpu >= 0:
        chainer.cuda.get_device_from_id(args.gpu).use()
        classifier.to_gpu()

    optimizer = O.Adam()
    optimizer.setup(classifier)

    updater = training.StandardUpdater(train_iter,
                                       optimizer,
                                       device=args.gpu,
                                       converter=concat_mols)
    trainer = training.Trainer(updater, (args.epoch, 'epoch'), out=args.out)

    trainer.extend(
        E.Evaluator(val_iter,
                    classifier,
                    device=args.gpu,
                    converter=concat_mols))
    trainer.extend(E.LogReport())

    # --- ROCAUC Evaluator ---
    train_eval_iter = I.SerialIterator(train,
                                       args.batchsize,
                                       repeat=False,
                                       shuffle=False)
    trainer.extend(
        ROCAUCEvaluator(train_eval_iter,
                        classifier,
                        eval_func=predictor_,
                        device=args.gpu,
                        converter=concat_mols,
                        name='train'))
    trainer.extend(
        ROCAUCEvaluator(val_iter,
                        classifier,
                        eval_func=predictor_,
                        device=args.gpu,
                        converter=concat_mols,
                        name='val'))
    trainer.extend(
        E.PrintReport([
            'epoch', 'main/loss', 'main/accuracy', 'train/main/roc_auc',
            'validation/main/loss', 'validation/main/accuracy',
            'val/main/roc_auc', 'elapsed_time'
        ]))

    trainer.extend(E.ProgressBar(update_interval=10))
    if args.resume:
        chainer.serializers.load_npz(args.resume, trainer)

    trainer.run()

    with open(os.path.join(args.out, 'args.json'), 'w') as f:
        json.dump(vars(args), f, indent=4)
    chainer.serializers.save_npz(os.path.join(args.out, 'predictor.npz'),
                                 predictor_)
示例#7
0
def main():
    # Supported preprocessing/network list
    method_list = ['nfp', 'ggnn', 'schnet', 'weavenet', 'rsgcn', 'relgcn',
                   'relgat']
    label_names = D.get_tox21_label_names()
    iterator_type = ['serial', 'balanced']

    parser = argparse.ArgumentParser(
        description='Multitask Learning with Tox21.')
    parser.add_argument('--method', '-m', type=str, choices=method_list,
                        default='nfp', help='graph convolution model to use '
                        'as a predictor.')
    parser.add_argument('--label', '-l', type=str, choices=label_names,
                        default='', help='target label for logistic '
                        'regression. Use all labels if this option '
                        'is not specified.')
    parser.add_argument('--iterator-type', type=str, choices=iterator_type,
                        default='serial', help='iterator type. If `balanced` '
                        'is specified, data is sampled to take same number of'
                        'positive/negative labels during training.')
    parser.add_argument('--eval-mode', type=int, default=1,
                        help='Evaluation mode.'
                        '0: only binary_accuracy is calculated.'
                        '1: binary_accuracy and ROC-AUC score is calculated')
    parser.add_argument('--conv-layers', '-c', type=int, default=4,
                        help='number of convolution layers')
    parser.add_argument('--batchsize', '-b', type=int, default=32,
                        help='batch size')
    parser.add_argument('--gpu', '-g', type=int, default=-1,
                        help='GPU ID to use. Negative value indicates '
                        'not to use GPU and to run the code in CPU.')
    parser.add_argument('--out', '-o', type=str, default='result',
                        help='path to output directory')
    parser.add_argument('--epoch', '-e', type=int, default=10,
                        help='number of epochs')
    parser.add_argument('--unit-num', '-u', type=int, default=16,
                        help='number of units in one layer of the model')
    parser.add_argument('--resume', '-r', type=str, default='',
                        help='path to a trainer snapshot')
    parser.add_argument('--frequency', '-f', type=int, default=-1,
                        help='Frequency of taking a snapshot')
    parser.add_argument('--protocol', type=int, default=2,
                        help='protocol version for pickle')
    parser.add_argument('--model-filename', type=str, default='classifier.pkl',
                        help='file name for pickled model')
    parser.add_argument('--num-data', type=int, default=-1,
                        help='Number of data to be parsed from parser.'
                             '-1 indicates to parse all data.')
    args = parser.parse_args()

    method = args.method
    if args.label:
        labels = args.label
        class_num = len(labels) if isinstance(labels, list) else 1
    else:
        labels = None
        class_num = len(label_names)

    # Dataset preparation
    train, val, _ = data.load_dataset(method, labels, num_data=args.num_data)

    # Network
    predictor_ = predictor.build_predictor(
        method, args.unit_num, args.conv_layers, class_num)

    iterator_type = args.iterator_type
    if iterator_type == 'serial':
        train_iter = I.SerialIterator(train, args.batchsize)
    elif iterator_type == 'balanced':
        if class_num > 1:
            raise ValueError('BalancedSerialIterator can be used with only one'
                             'label classification, please specify label to'
                             'be predicted by --label option.')
        train_iter = BalancedSerialIterator(
            train, args.batchsize, train.features[:, -1], ignore_labels=-1)
        train_iter.show_label_stats()
    else:
        raise ValueError('Invalid iterator type {}'.format(iterator_type))
    val_iter = I.SerialIterator(val, args.batchsize,
                                repeat=False, shuffle=False)

    classifier = Classifier(predictor_,
                            lossfun=F.sigmoid_cross_entropy,
                            metrics_fun=F.binary_accuracy,
                            device=args.gpu)

    optimizer = O.Adam()
    optimizer.setup(classifier)

    updater = training.StandardUpdater(
        train_iter, optimizer, device=args.gpu, converter=concat_mols)
    trainer = training.Trainer(updater, (args.epoch, 'epoch'), out=args.out)

    trainer.extend(E.Evaluator(val_iter, classifier,
                               device=args.gpu, converter=concat_mols))
    trainer.extend(E.LogReport())

    eval_mode = args.eval_mode
    if eval_mode == 0:
        trainer.extend(E.PrintReport([
            'epoch', 'main/loss', 'main/accuracy', 'validation/main/loss',
            'validation/main/accuracy', 'elapsed_time']))
    elif eval_mode == 1:
        train_eval_iter = I.SerialIterator(train, args.batchsize,
                                           repeat=False, shuffle=False)
        trainer.extend(ROCAUCEvaluator(
            train_eval_iter, classifier, eval_func=predictor_,
            device=args.gpu, converter=concat_mols, name='train',
            pos_labels=1, ignore_labels=-1, raise_value_error=False))
        # extension name='validation' is already used by `Evaluator`,
        # instead extension name `val` is used.
        trainer.extend(ROCAUCEvaluator(
            val_iter, classifier, eval_func=predictor_,
            device=args.gpu, converter=concat_mols, name='val',
            pos_labels=1, ignore_labels=-1))
        trainer.extend(E.PrintReport([
            'epoch', 'main/loss', 'main/accuracy', 'train/main/roc_auc',
            'validation/main/loss', 'validation/main/accuracy',
            'val/main/roc_auc', 'elapsed_time']))
    else:
        raise ValueError('Invalid accfun_mode {}'.format(eval_mode))
    trainer.extend(E.ProgressBar(update_interval=10))
    frequency = args.epoch if args.frequency == -1 else max(1, args.frequency)
    trainer.extend(E.snapshot(), trigger=(frequency, 'epoch'))

    if args.resume:
        chainer.serializers.load_npz(args.resume, trainer)

    trainer.run()

    config = {'method': args.method,
              'conv_layers': args.conv_layers,
              'unit_num': args.unit_num,
              'labels': args.label}

    with open(os.path.join(args.out, 'config.json'), 'w') as o:
        o.write(json.dumps(config))

    classifier.save_pickle(os.path.join(args.out, args.model_filename),
                           protocol=args.protocol)
示例#8
0
def main():
    # Supported preprocessing/network list
    method_list = [
        'nfp', 'ggnn', 'schnet', 'weavenet', 'rsgcn', 'relgcn', 'relgat'
    ]
    label_names = D.get_tox21_label_names()
    iterator_type = ['serial', 'balanced']

    parser = argparse.ArgumentParser(
        description='Multitask Learning with Tox21.')
    parser.add_argument('--method',
                        '-m',
                        type=str,
                        choices=method_list,
                        default='nfp',
                        help='graph convolution model to use '
                        'as a predictor.')
    parser.add_argument('--label',
                        '-l',
                        type=str,
                        choices=label_names,
                        default='',
                        help='target label for logistic '
                        'regression. Use all labels if this option '
                        'is not specified.')
    parser.add_argument('--iterator-type',
                        type=str,
                        choices=iterator_type,
                        default='serial',
                        help='iterator type. If `balanced` '
                        'is specified, data is sampled to take same number of'
                        'positive/negative labels during training.')
    parser.add_argument('--eval-mode',
                        type=int,
                        default=1,
                        help='Evaluation mode.'
                        '0: only binary_accuracy is calculated.'
                        '1: binary_accuracy and ROC-AUC score is calculated')
    parser.add_argument('--conv-layers',
                        '-c',
                        type=int,
                        default=4,
                        help='number of convolution layers')
    parser.add_argument('--batchsize',
                        '-b',
                        type=int,
                        default=32,
                        help='batch size')
    parser.add_argument(
        '--device',
        type=str,
        default='-1',
        help='Device specifier. Either ChainerX device specifier or an '
        'integer. If non-negative integer, CuPy arrays with specified '
        'device id are used. If negative integer, NumPy arrays are used')
    parser.add_argument('--out',
                        '-o',
                        type=str,
                        default='result',
                        help='path to output directory')
    parser.add_argument('--epoch',
                        '-e',
                        type=int,
                        default=10,
                        help='number of epochs')
    parser.add_argument('--unit-num',
                        '-u',
                        type=int,
                        default=16,
                        help='number of units in one layer of the model')
    parser.add_argument('--resume',
                        '-r',
                        type=str,
                        default='',
                        help='path to a trainer snapshot')
    parser.add_argument('--frequency',
                        '-f',
                        type=int,
                        default=-1,
                        help='Frequency of taking a snapshot')
    parser.add_argument('--protocol',
                        type=int,
                        default=2,
                        help='protocol version for pickle')
    parser.add_argument('--model-filename',
                        type=str,
                        default='classifier.pkl',
                        help='file name for pickled model')
    parser.add_argument('--num-data',
                        type=int,
                        default=-1,
                        help='Number of data to be parsed from parser.'
                        '-1 indicates to parse all data.')
    args = parser.parse_args()

    method = args.method
    if args.label:
        labels = args.label
        class_num = len(labels) if isinstance(labels, list) else 1
    else:
        labels = None
        class_num = len(label_names)

    # Dataset preparation
    train, val, _ = data.load_dataset(method, labels, num_data=args.num_data)

    # Network
    predictor_ = set_up_predictor(method, args.unit_num, args.conv_layers,
                                  class_num)

    iterator_type = args.iterator_type
    if iterator_type == 'serial':
        train_iter = I.SerialIterator(train, args.batchsize)
    elif iterator_type == 'balanced':
        if class_num > 1:
            raise ValueError('BalancedSerialIterator can be used with only one'
                             'label classification, please specify label to'
                             'be predicted by --label option.')
        train_iter = BalancedSerialIterator(train,
                                            args.batchsize,
                                            train.features[:, -1],
                                            ignore_labels=-1)
        train_iter.show_label_stats()
    else:
        raise ValueError('Invalid iterator type {}'.format(iterator_type))

    device = chainer.get_device(args.device)
    classifier = Classifier(predictor_,
                            lossfun=F.sigmoid_cross_entropy,
                            metrics_fun=F.binary_accuracy,
                            device=device)

    extensions_list = []
    eval_mode = args.eval_mode
    if eval_mode == 1:
        train_eval_iter = I.SerialIterator(train,
                                           args.batchsize,
                                           repeat=False,
                                           shuffle=False)

        extensions_list.append(
            ROCAUCEvaluator(train_eval_iter,
                            classifier,
                            eval_func=predictor_,
                            device=device,
                            converter=concat_mols,
                            name='train',
                            pos_labels=1,
                            ignore_labels=-1,
                            raise_value_error=False))
        # extension name='validation' is already used by `Evaluator`,
        # instead extension name `val` is used.
        val_iter = I.SerialIterator(val,
                                    args.batchsize,
                                    repeat=False,
                                    shuffle=False)
        extensions_list.append(
            ROCAUCEvaluator(val_iter,
                            classifier,
                            eval_func=predictor_,
                            device=device,
                            converter=concat_mols,
                            name='val',
                            pos_labels=1,
                            ignore_labels=-1))

    run_train(classifier,
              train_iter,
              valid=val,
              batch_size=args.batchsize,
              epoch=args.epoch,
              out=args.out,
              device=device,
              converter=concat_mols,
              extensions_list=extensions_list,
              resume_path=args.resume)

    # frequency = args.epoch if args.frequency == -1 else max(1, args.frequency)
    # trainer.extend(E.snapshot(), trigger=(frequency, 'epoch'))
    # trainer.run()

    config = {
        'method': args.method,
        'conv_layers': args.conv_layers,
        'unit_num': args.unit_num,
        'labels': args.label
    }
    save_json(os.path.join(args.out, 'config.json'), config)

    classifier.save_pickle(os.path.join(args.out, args.model_filename),
                           protocol=args.protocol)
示例#9
0
def main():
    # Parse the arguments.
    args = parse_arguments()
    args.out = os.path.join(args.out, args.method)
    save_args(args, args.out)

    if args.label:
        labels = args.label
        class_num = len(labels) if isinstance(labels, list) else 1
    else:
        raise ValueError('No target label was specified.')

    # Dataset preparation. Postprocessing is required for the regression task.
    def postprocess_label_float(label_list):
        return numpy.asarray(label_list, dtype=numpy.float32)
    def postprocess_label_int(label_list):
        return numpy.asarray(label_list, dtype=numpy.int64)

    # Apply a preprocessor to the dataset.
    if args.train:
    ## training data
        fn,ext = os.path.splitext(args.train)
        if ext==".npz":
            print('Loading training dataset...')
            train = NumpyTupleDataset.load(args.train)
        else:
            print('Preprocessing training dataset...')
            preprocessor = preprocess_method_dict[args.method]()
            if args.classification:
                parser = CSVFileParser(preprocessor, postprocess_label=postprocess_label_int,labels=labels, smiles_col='SMILES')
            else:
                parser = CSVFileParser(preprocessor, postprocess_label=postprocess_label_float,labels=labels, smiles_col='SMILES')
            train = parser.parse(args.train)['dataset']
            NumpyTupleDataset.save(os.path.join(args.out,os.path.split(fn)[1]), train)        
        # Scale the label values, if necessary.
        if args.scale == 'standardize':
            scaler = StandardScaler()
            scaler.fit(train.get_datasets()[-1])
        else:
            scaler = None

    ## test data
    fn,ext = os.path.splitext(args.val)
    if ext==".npz":
        print('Loading test dataset...')
        test = NumpyTupleDataset.load(args.val)
    else:
        print('Preprocessing test dataset...')
        preprocessor = preprocess_method_dict[args.method]()
        if args.classification:
            parser = CSVFileParser(preprocessor, postprocess_label=postprocess_label_int,labels=labels, smiles_col='SMILES')
        else:
            parser = CSVFileParser(preprocessor, postprocess_label=postprocess_label_float,labels=labels, smiles_col='SMILES')
        test = parser.parse(args.val)['dataset']
        NumpyTupleDataset.save(os.path.join(args.out,os.path.split(fn)[1]), test)


    # Set up the model.
    device = chainer.get_device(args.device)
    converter = converter_method_dict[args.method]
    metrics_fun = {'mae': F.mean_absolute_error, 'rmse': rmse}
    if args.classification:
        if args.load_model:
            model = Classifier.load_pickle(args.load_model, device=device)
            print("model file loaded: ",args.load_model)
        else:
            predictor = set_up_predictor(args.method, args.unit_num, args.conv_layers, class_num)
            model = Classifier(predictor,
                                    lossfun=F.sigmoid_cross_entropy,
                                    metrics_fun=F.binary_accuracy,
                                    device=device)
    else:
        if args.load_model:
            model = Regressor.load_pickle(args.load_model, device=device)
            print("model file loaded: ",args.load_model)
        else:
            predictor = set_up_predictor(
                args.method+args.method_suffix, args.unit_num,
                args.conv_layers, class_num, label_scaler=scaler)
            model = Regressor(predictor, lossfun=F.mean_squared_error,
                            metrics_fun=metrics_fun, device=device)

    if args.train:
        if args.balanced_iter:
            train = BalancedSerialIterator(train, args.batchsize, train.features[:, -1], ignore_labels=-1)
            train.show_label_stats()
            
        print('Training...')
        log_keys = ['main/mae','main/rmse','validation/main/mae','validation/main/rmse','validation/main/roc_auc']
        extensions_list = [extensions.PlotReport(log_keys, 'iteration', trigger=(100, 'iteration'), file_name='loss.png')]
        if args.eval_roc and args.classification:
            extensions_list.append(ROCAUCEvaluator(
                        test, model, eval_func=predictor,
                        device=device, converter=converter, name='validation',
                        pos_labels=1, ignore_labels=-1, raise_value_error=False))

        save_json(os.path.join(args.out, 'args.json'), vars(args))
        run_train(model, train, valid=test,
                batch_size=args.batchsize, epoch=args.epoch,
                out=args.out, extensions_list=extensions_list,
                device=device, converter=converter) #, resume_path=args.resume)

        # Save the model's parameters.
        model_path = os.path.join(args.out, args.model_filename)
        print('Saving the trained model to {}...'.format(model_path))
        if hasattr(model.predictor.graph_conv, 'reset_state'):
            model.predictor.graph_conv.reset_state()
        model.save_pickle(model_path, protocol=args.protocol)

    ## prediction
    it = SerialIterator(test, args.batchsize, repeat=False, shuffle=False)
    result = []
    for batch in it:
        in_arrays = convert._call_converter(converter, batch, device)
        with chainer.using_config('train', False), chainer.function.no_backprop_mode():
            if isinstance(in_arrays, tuple):
                res = model(*in_arrays)
            elif isinstance(in_arrays, dict):
                res = model(**in_arrays)
            else:
                res = model(in_arrays)
        result.extend(model.y.array.get())

    numpy.savetxt(os.path.join(args.out,"result.csv"), numpy.array(result))

    eval_result = Evaluator(it, model, converter=converter,device=device)()
    print('Evaluation result: ', eval_result)