def get_input_features(self, mol): """get input features Args: mol (Mol): Returns: """ type_check_num_atoms(mol, self.max_atoms) atom_array = construct_atomic_number_array(mol, out_size=self.out_size) return atom_array
def get_input_features(self, mol): """get input features for WeaveNet WeaveNetPreprocessor automatically add `H` to `mol` Args: mol (Mol): """ type_check_num_atoms(mol, self.max_atoms) # TODO(Nakago): support original paper feature extraction # currently only embed id is supported. atom_array = construct_atomic_number_array(mol, self.max_atoms) pair_feature = construct_pair_feature(mol, num_max_atoms=self.max_atoms) return atom_array, pair_feature
def test_normal_truncated(self, sample_molecule): with pytest.raises(ValueError): adj = common.construct_atomic_number_array(sample_molecule, 3)
def test_padding(self, sample_molecule): actual = common.construct_atomic_number_array(sample_molecule, 5) assert actual.shape == (5, ) expect = numpy.array([6, 7, 6, 8, 0], dtype=numpy.int32) numpy.testing.assert_equal(actual, expect)