def test_coco_bbox_dataset(self): assert_is_bbox_dataset(self.dataset, len(coco_bbox_label_names), n_example=30) if self.return_area: for _ in range(10): i = np.random.randint(0, len(self.dataset)) _, bbox, _, area = self.dataset[i][:4] self.assertIsInstance(area, np.ndarray) self.assertEqual(area.dtype, np.float32) self.assertEqual(area.shape, (bbox.shape[0], )) if self.return_crowded: for _ in range(10): i = np.random.randint(0, len(self.dataset)) example = self.dataset[i] crowded = example[-1] bbox = example[1] self.assertIsInstance(crowded, np.ndarray) self.assertEqual(crowded.dtype, np.bool) self.assertEqual(crowded.shape, (bbox.shape[0], )) if not self.use_crowded: np.testing.assert_equal(crowded, 0)
def test_assert_is_bbox_dataset(self): if self.valid: assert_is_bbox_dataset(self.dataset, 20) else: with self.assertRaises(AssertionError): assert_is_bbox_dataset(self.dataset, 20)
def test_as_bbox_dataset(self): assert_is_bbox_dataset(self.dataset, len(voc_bbox_label_names), n_example=10)
def test_as_bbox_dataset(self): assert_is_bbox_dataset( self.dataset, len(voc_bbox_label_names), n_example=10)