示例#1
0
def parse_arch(arch, n_actions, activation):
    if arch == 'nature':
        return links.Sequence(links.NatureDQNHead(activation=activation),
                              L.Linear(512, n_actions), DiscreteActionValue)
    elif arch == 'nips':
        return links.Sequence(links.NIPSDQNHead(activation=activation),
                              L.Linear(256, n_actions), DiscreteActionValue)
    elif arch == 'dueling':
        return DuelingDQN(n_actions)
    else:
        raise RuntimeError('Not supported architecture: {}'.format(arch))
def parse_arch(arch, n_actions):
    if arch == 'nature':
        return links.Sequence(links.NatureDQNHead(), L.Linear(512, n_actions),
                              DiscreteActionValue)
    elif arch == 'doubledqn':
        return links.Sequence(links.NatureDQNHead(),
                              L.Linear(512, n_actions, nobias=True),
                              SingleSharedBias(), DiscreteActionValue)
    elif arch == 'nips':
        return links.Sequence(links.NIPSDQNHead(), L.Linear(256, n_actions),
                              DiscreteActionValue)
    elif arch == 'dueling':
        return DuelingDQN(n_actions)
    else:
        raise RuntimeError('Not supported architecture: {}'.format(arch))
示例#3
0
def main():

    parser = argparse.ArgumentParser()
    parser.add_argument('processes', type=int)
    parser.add_argument('--env', type=str, default='BreakoutNoFrameskip-v4')
    parser.add_argument('--seed',
                        type=int,
                        default=0,
                        help='Random seed [0, 2 ** 31)')
    parser.add_argument('--outdir',
                        type=str,
                        default='results',
                        help='Directory path to save output files.'
                        ' If it does not exist, it will be created.')
    parser.add_argument('--t-max', type=int, default=5)
    parser.add_argument('--replay-start-size', type=int, default=10000)
    parser.add_argument('--n-times-replay', type=int, default=4)
    parser.add_argument('--beta', type=float, default=1e-2)
    parser.add_argument('--profile', action='store_true')
    parser.add_argument('--steps', type=int, default=10**7)
    parser.add_argument(
        '--max-frames',
        type=int,
        default=30 * 60 * 60,  # 30 minutes with 60 fps
        help='Maximum number of frames for each episode.')
    parser.add_argument('--lr', type=float, default=7e-4)
    parser.add_argument('--eval-interval', type=int, default=10**5)
    parser.add_argument('--eval-n-runs', type=int, default=10)
    parser.add_argument('--weight-decay', type=float, default=0.0)
    parser.add_argument('--use-lstm', action='store_true')
    parser.add_argument('--demo', action='store_true', default=False)
    parser.add_argument('--load', type=str, default='')
    parser.add_argument('--logging-level',
                        type=int,
                        default=20,
                        help='Logging level. 10:DEBUG, 20:INFO etc.')
    parser.add_argument('--render',
                        action='store_true',
                        default=False,
                        help='Render env states in a GUI window.')
    parser.add_argument('--monitor',
                        action='store_true',
                        default=False,
                        help='Monitor env. Videos and additional information'
                        ' are saved as output files.')
    parser.set_defaults(use_lstm=False)
    args = parser.parse_args()

    import logging
    logging.basicConfig(level=args.logging_level)

    # Set a random seed used in ChainerRL.
    # If you use more than one processes, the results will be no longer
    # deterministic even with the same random seed.
    misc.set_random_seed(args.seed)

    # Set different random seeds for different subprocesses.
    # If seed=0 and processes=4, subprocess seeds are [0, 1, 2, 3].
    # If seed=1 and processes=4, subprocess seeds are [4, 5, 6, 7].
    process_seeds = np.arange(args.processes) + args.seed * args.processes
    assert process_seeds.max() < 2**31

    args.outdir = experiments.prepare_output_dir(args, args.outdir)
    print('Output files are saved in {}'.format(args.outdir))

    n_actions = gym.make(args.env).action_space.n

    if args.use_lstm:
        model = acer.ACERSharedModel(
            shared=links.Sequence(links.NIPSDQNHead(), L.LSTM(256, 256)),
            pi=links.Sequence(L.Linear(256, n_actions), SoftmaxDistribution),
            q=links.Sequence(L.Linear(256, n_actions), DiscreteActionValue),
        )
    else:
        model = acer.ACERSharedModel(
            shared=links.NIPSDQNHead(),
            pi=links.Sequence(L.Linear(256, n_actions), SoftmaxDistribution),
            q=links.Sequence(L.Linear(256, n_actions), DiscreteActionValue),
        )
    opt = rmsprop_async.RMSpropAsync(lr=7e-4, eps=4e-3, alpha=0.99)
    opt.setup(model)
    opt.add_hook(chainer.optimizer.GradientClipping(40))
    if args.weight_decay > 0:
        opt.add_hook(NonbiasWeightDecay(args.weight_decay))
    replay_buffer = EpisodicReplayBuffer(10**6 // args.processes)

    def phi(x):
        # Feature extractor
        return np.asarray(x, dtype=np.float32) / 255

    agent = acer.ACER(model,
                      opt,
                      t_max=args.t_max,
                      gamma=0.99,
                      replay_buffer=replay_buffer,
                      n_times_replay=args.n_times_replay,
                      replay_start_size=args.replay_start_size,
                      beta=args.beta,
                      phi=phi)

    if args.load:
        agent.load(args.load)

    def make_env(process_idx, test):
        # Use different random seeds for train and test envs
        process_seed = process_seeds[process_idx]
        env_seed = 2**31 - 1 - process_seed if test else process_seed
        env = atari_wrappers.wrap_deepmind(atari_wrappers.make_atari(
            args.env, max_frames=args.max_frames),
                                           episode_life=not test,
                                           clip_rewards=not test)
        env.seed(int(env_seed))
        if args.monitor:
            env = gym.wrappers.Monitor(
                env, args.outdir, mode='evaluation' if test else 'training')
        if args.render:
            env = chainerrl.wrappers.Render(env)
        return env

    if args.demo:
        env = make_env(0, True)
        eval_stats = experiments.eval_performance(env=env,
                                                  agent=agent,
                                                  n_runs=args.eval_n_runs)
        print('n_runs: {} mean: {} median: {} stdev {}'.format(
            args.eval_n_runs, eval_stats['mean'], eval_stats['median'],
            eval_stats['stdev']))
    else:

        # Linearly decay the learning rate to zero
        def lr_setter(env, agent, value):
            agent.optimizer.lr = value

        lr_decay_hook = experiments.LinearInterpolationHook(
            args.steps, args.lr, 0, lr_setter)

        experiments.train_agent_async(
            agent=agent,
            outdir=args.outdir,
            processes=args.processes,
            make_env=make_env,
            profile=args.profile,
            steps=args.steps,
            eval_n_runs=args.eval_n_runs,
            eval_interval=args.eval_interval,
            global_step_hooks=[lr_decay_hook],
            save_best_so_far_agent=False,
        )
示例#4
0
def main():

    import logging
    logging.basicConfig(level=logging.DEBUG)

    parser = argparse.ArgumentParser()
    parser.add_argument('processes', type=int)
    parser.add_argument('rom', type=str)
    parser.add_argument('--seed',
                        type=int,
                        default=0,
                        help='Random seed [0, 2 ** 31)')
    parser.add_argument('--outdir',
                        type=str,
                        default='results',
                        help='Directory path to save output files.'
                        ' If it does not exist, it will be created.')
    parser.add_argument('--use-sdl', action='store_true')
    parser.add_argument('--t-max', type=int, default=5)
    parser.add_argument('--replay-start-size', type=int, default=10000)
    parser.add_argument('--n-times-replay', type=int, default=4)
    parser.add_argument('--max-episode-len', type=int, default=10000)
    parser.add_argument('--beta', type=float, default=1e-2)
    parser.add_argument('--profile', action='store_true')
    parser.add_argument('--steps', type=int, default=8 * 10**7)
    parser.add_argument('--lr', type=float, default=7e-4)
    parser.add_argument('--eval-interval', type=int, default=10**6)
    parser.add_argument('--eval-n-runs', type=int, default=10)
    parser.add_argument('--weight-decay', type=float, default=0.0)
    parser.add_argument('--use-lstm', action='store_true')
    parser.add_argument('--demo', action='store_true', default=False)
    parser.add_argument('--load', type=str, default='')
    parser.set_defaults(use_sdl=False)
    parser.set_defaults(use_lstm=False)
    args = parser.parse_args()

    # Set a random seed used in ChainerRL.
    # If you use more than one processes, the results will be no longer
    # deterministic even with the same random seed.
    misc.set_random_seed(args.seed)

    # Set different random seeds for different subprocesses.
    # If seed=0 and processes=4, subprocess seeds are [0, 1, 2, 3].
    # If seed=1 and processes=4, subprocess seeds are [4, 5, 6, 7].
    process_seeds = np.arange(args.processes) + args.seed * args.processes
    assert process_seeds.max() < 2**31

    args.outdir = experiments.prepare_output_dir(args, args.outdir)
    print('Output files are saved in {}'.format(args.outdir))

    n_actions = ale.ALE(args.rom).number_of_actions

    if args.use_lstm:
        model = acer.ACERSharedModel(
            shared=links.Sequence(links.NIPSDQNHead(), L.LSTM(256, 256)),
            pi=links.Sequence(L.Linear(256, n_actions), SoftmaxDistribution),
            q=links.Sequence(L.Linear(256, n_actions), DiscreteActionValue),
        )
    else:
        model = acer.ACERSharedModel(
            shared=links.NIPSDQNHead(),
            pi=links.Sequence(L.Linear(256, n_actions), SoftmaxDistribution),
            q=links.Sequence(L.Linear(256, n_actions), DiscreteActionValue),
        )
    opt = rmsprop_async.RMSpropAsync(lr=7e-4, eps=4e-3, alpha=0.99)
    opt.setup(model)
    opt.add_hook(chainer.optimizer.GradientClipping(40))
    if args.weight_decay > 0:
        opt.add_hook(NonbiasWeightDecay(args.weight_decay))
    replay_buffer = EpisodicReplayBuffer(10**6 // args.processes)
    agent = acer.ACER(model,
                      opt,
                      t_max=args.t_max,
                      gamma=0.99,
                      replay_buffer=replay_buffer,
                      n_times_replay=args.n_times_replay,
                      replay_start_size=args.replay_start_size,
                      beta=args.beta,
                      phi=dqn_phi)

    if args.load:
        agent.load(args.load)

    def make_env(process_idx, test):
        # Use different random seeds for train and test envs
        process_seed = process_seeds[process_idx]
        env_seed = 2**31 - 1 - process_seed if test else process_seed
        env = ale.ALE(args.rom,
                      use_sdl=args.use_sdl,
                      treat_life_lost_as_terminal=not test,
                      seed=env_seed)
        if not test:
            misc.env_modifiers.make_reward_clipped(env, -1, 1)
        return env

    if args.demo:
        env = make_env(0, True)
        eval_stats = experiments.eval_performance(env=env,
                                                  agent=agent,
                                                  n_runs=args.eval_n_runs)
        print('n_runs: {} mean: {} median: {} stdev {}'.format(
            args.eval_n_runs, eval_stats['mean'], eval_stats['median'],
            eval_stats['stdev']))
    else:

        # Linearly decay the learning rate to zero
        def lr_setter(env, agent, value):
            agent.optimizer.lr = value

        lr_decay_hook = experiments.LinearInterpolationHook(
            args.steps, args.lr, 0, lr_setter)

        experiments.train_agent_async(agent=agent,
                                      outdir=args.outdir,
                                      processes=args.processes,
                                      make_env=make_env,
                                      profile=args.profile,
                                      steps=args.steps,
                                      eval_n_runs=args.eval_n_runs,
                                      eval_interval=args.eval_interval,
                                      max_episode_len=args.max_episode_len,
                                      global_step_hooks=[lr_decay_hook])
示例#5
0
 def __init__(self, n_actions):
     self.head = links.NIPSDQNHead()
     self.pi = policy.FCSoftmaxPolicy(self.head.n_output_channels,
                                      n_actions)
     self.v = v_function.FCVFunction(self.head.n_output_channels)
     super().__init__(self.head, self.pi, self.v)
示例#6
0
def main():

    parser = argparse.ArgumentParser()
    parser.add_argument('processes', type=int)
    parser.add_argument('--env', type=str, default='BreakoutNoFrameskip-v4')
    parser.add_argument('--seed',
                        type=int,
                        default=0,
                        help='Random seed [0, 2 ** 31)')
    parser.add_argument('--lr', type=float, default=7e-4)
    parser.add_argument('--steps', type=int, default=8 * 10**7)
    parser.add_argument(
        '--max-episode-len',
        type=int,
        default=5 * 60 * 60 // 4,  # 5 minutes with 60/4 fps
        help='Maximum number of steps for each episode.')
    parser.add_argument('--final-exploration-frames',
                        type=int,
                        default=4 * 10**6)
    parser.add_argument('--outdir',
                        type=str,
                        default='results',
                        help='Directory path to save output files.'
                        ' If it does not exist, it will be created.')
    parser.add_argument('--profile', action='store_true')
    parser.add_argument('--eval-interval', type=int, default=10**6)
    parser.add_argument('--eval-n-runs', type=int, default=10)
    parser.add_argument('--demo', action='store_true', default=False)
    parser.add_argument('--load', type=str, default=None)
    parser.add_argument('--logging-level',
                        type=int,
                        default=20,
                        help='Logging level. 10:DEBUG, 20:INFO etc.')
    parser.add_argument('--render',
                        action='store_true',
                        default=False,
                        help='Render env states in a GUI window.')
    parser.add_argument('--monitor',
                        action='store_true',
                        default=False,
                        help='Monitor env. Videos and additional information'
                        ' are saved as output files.')
    args = parser.parse_args()

    import logging
    logging.basicConfig(level=args.logging_level)

    # Set a random seed used in ChainerRL.
    # If you use more than one processes, the results will be no longer
    # deterministic even with the same random seed.
    misc.set_random_seed(args.seed)

    # Set different random seeds for different subprocesses.
    # If seed=0 and processes=4, subprocess seeds are [0, 1, 2, 3].
    # If seed=1 and processes=4, subprocess seeds are [4, 5, 6, 7].
    process_seeds = np.arange(args.processes) + args.seed * args.processes
    assert process_seeds.max() < 2**31

    args.outdir = experiments.prepare_output_dir(args, args.outdir)
    print('Output files are saved in {}'.format(args.outdir))

    def make_env(process_idx, test):
        # Use different random seeds for train and test envs
        process_seed = process_seeds[process_idx]
        env_seed = 2**31 - 1 - process_seed if test else process_seed
        env = atari_wrappers.wrap_deepmind(atari_wrappers.make_atari(args.env),
                                           episode_life=not test,
                                           clip_rewards=not test)
        env.seed(int(env_seed))
        if test:
            # Randomize actions like epsilon-greedy in evaluation as well
            env = chainerrl.wrappers.RandomizeAction(env, 0.05)
        if args.monitor:
            env = gym.wrappers.Monitor(
                env, args.outdir, mode='evaluation' if test else 'training')
        if args.render:
            env = chainerrl.wrappers.Render(env)
        return env

    sample_env = make_env(0, test=False)
    action_space = sample_env.action_space
    assert isinstance(action_space, spaces.Discrete)

    # Define a model and its optimizer
    q_func = links.Sequence(links.NIPSDQNHead(), L.Linear(256, action_space.n),
                            DiscreteActionValue)
    opt = rmsprop_async.RMSpropAsync(lr=args.lr, eps=1e-1, alpha=0.99)
    opt.setup(q_func)

    def phi(x):
        # Feature extractor
        return np.asarray(x, dtype=np.float32) / 255

    # Make process-specific agents to diversify exploration
    def make_agent(process_idx):
        # Random epsilon assignment described in the original paper
        rand = random.random()
        if rand < 0.4:
            epsilon_target = 0.1
        elif rand < 0.7:
            epsilon_target = 0.01
        else:
            epsilon_target = 0.5
        explorer = explorers.LinearDecayEpsilonGreedy(
            1, epsilon_target, args.final_exploration_frames,
            action_space.sample)
        # Suppress the explorer logger
        explorer.logger.setLevel(logging.INFO)
        return nsq.NSQ(q_func,
                       opt,
                       t_max=5,
                       gamma=0.99,
                       i_target=40000,
                       explorer=explorer,
                       phi=phi)

    if args.demo:
        env = make_env(0, True)
        agent = make_agent(0)
        eval_stats = experiments.eval_performance(env=env,
                                                  agent=agent,
                                                  n_runs=args.eval_n_runs)
        print('n_runs: {} mean: {} median: {} stdev {}'.format(
            args.eval_n_runs, eval_stats['mean'], eval_stats['median'],
            eval_stats['stdev']))
    else:
        # Linearly decay the learning rate to zero
        def lr_setter(env, agent, value):
            agent.optimizer.lr = value

        lr_decay_hook = experiments.LinearInterpolationHook(
            args.steps, args.lr, 0, lr_setter)

        experiments.train_agent_async(
            outdir=args.outdir,
            processes=args.processes,
            make_env=make_env,
            make_agent=make_agent,
            profile=args.profile,
            steps=args.steps,
            eval_n_runs=args.eval_n_runs,
            eval_interval=args.eval_interval,
            max_episode_len=args.max_episode_len,
            global_step_hooks=[lr_decay_hook],
            save_best_so_far_agent=False,
        )
示例#7
0
def main():

    import logging
    logging.basicConfig(level=logging.DEBUG)

    parser = argparse.ArgumentParser()
    parser.add_argument('processes', type=int)
    parser.add_argument('rom', type=str)
    parser.add_argument('--seed',
                        type=int,
                        default=0,
                        help='Random seed [0, 2 ** 31)')
    parser.add_argument('--lr', type=float, default=7e-4)
    parser.add_argument('--steps', type=int, default=8 * 10**7)
    parser.add_argument('--use-sdl', action='store_true', default=False)
    parser.add_argument('--final-exploration-frames',
                        type=int,
                        default=4 * 10**6)
    parser.add_argument('--outdir',
                        type=str,
                        default='results',
                        help='Directory path to save output files.'
                        ' If it does not exist, it will be created.')
    parser.add_argument('--profile', action='store_true')
    parser.add_argument('--eval-interval', type=int, default=10**6)
    parser.add_argument('--eval-n-runs', type=int, default=10)
    parser.add_argument('--demo', action='store_true', default=False)
    parser.add_argument('--load', type=str, default=None)
    args = parser.parse_args()

    # Set a random seed used in ChainerRL.
    # If you use more than one processes, the results will be no longer
    # deterministic even with the same random seed.
    misc.set_random_seed(args.seed)

    # Set different random seeds for different subprocesses.
    # If seed=0 and processes=4, subprocess seeds are [0, 1, 2, 3].
    # If seed=1 and processes=4, subprocess seeds are [4, 5, 6, 7].
    process_seeds = np.arange(args.processes) + args.seed * args.processes
    assert process_seeds.max() < 2**31

    args.outdir = experiments.prepare_output_dir(args, args.outdir)
    print('Output files are saved in {}'.format(args.outdir))

    def make_env(process_idx, test):
        # Use different random seeds for train and test envs
        process_seed = process_seeds[process_idx]
        env_seed = 2**31 - 1 - process_seed if test else process_seed
        env = ale.ALE(args.rom,
                      use_sdl=args.use_sdl,
                      treat_life_lost_as_terminal=not test,
                      seed=env_seed)
        if not test:
            misc.env_modifiers.make_reward_clipped(env, -1, 1)
        return env

    sample_env = make_env(0, test=False)
    action_space = sample_env.action_space
    assert isinstance(action_space, spaces.Discrete)

    # Define a model and its optimizer
    q_func = links.Sequence(links.NIPSDQNHead(), L.Linear(256, action_space.n),
                            DiscreteActionValue)
    opt = rmsprop_async.RMSpropAsync(lr=args.lr, eps=1e-1, alpha=0.99)
    opt.setup(q_func)

    # Make process-specific agents to diversify exploration
    def make_agent(process_idx):
        # Random epsilon assignment described in the original paper
        rand = random.random()
        if rand < 0.4:
            epsilon_target = 0.1
        elif rand < 0.7:
            epsilon_target = 0.01
        else:
            epsilon_target = 0.5
        explorer = explorers.LinearDecayEpsilonGreedy(
            1, epsilon_target, args.final_exploration_frames,
            action_space.sample)
        # Suppress the explorer logger
        explorer.logger.setLevel(logging.INFO)
        return nsq.NSQ(q_func,
                       opt,
                       t_max=5,
                       gamma=0.99,
                       i_target=40000,
                       explorer=explorer,
                       phi=dqn_phi)

    if args.demo:
        env = make_env(0, True)
        agent = make_agent(0)
        eval_stats = experiments.eval_performance(env=env,
                                                  agent=agent,
                                                  n_runs=args.eval_n_runs)
        print('n_runs: {} mean: {} median: {} stdev {}'.format(
            args.eval_n_runs, eval_stats['mean'], eval_stats['median'],
            eval_stats['stdev']))
    else:
        explorer = explorers.ConstantEpsilonGreedy(0.05, action_space.sample)

        # Linearly decay the learning rate to zero
        def lr_setter(env, agent, value):
            agent.optimizer.lr = value

        lr_decay_hook = experiments.LinearInterpolationHook(
            args.steps, args.lr, 0, lr_setter)

        experiments.train_agent_async(outdir=args.outdir,
                                      processes=args.processes,
                                      make_env=make_env,
                                      make_agent=make_agent,
                                      profile=args.profile,
                                      steps=args.steps,
                                      eval_n_runs=args.eval_n_runs,
                                      eval_interval=args.eval_interval,
                                      eval_explorer=explorer,
                                      global_step_hooks=[lr_decay_hook])
示例#8
0
def main():

    # This prevents numpy from using multiple threads
    os.environ['OMP_NUM_THREADS'] = '1'

    import logging
    # logging.basicConfig(level=logging.DEBUG)

    parser = argparse.ArgumentParser()
    parser.add_argument('processes', type=int)
    parser.add_argument('rom', type=str)
    parser.add_argument('--seed', type=int, default=None)
    parser.add_argument('--lr', type=float, default=7e-4)
    parser.add_argument('--steps', type=int, default=8 * 10**7)
    parser.add_argument('--use-sdl', action='store_true', default=False)
    parser.add_argument('--final-exploration-frames',
                        type=int,
                        default=4 * 10**6)
    parser.add_argument('--outdir', type=str, default='nsq_output')
    parser.add_argument('--profile', action='store_true')
    parser.add_argument('--eval-interval', type=int, default=10**6)
    parser.add_argument('--eval-n-runs', type=int, default=10)
    parser.add_argument('--demo', action='store_true', default=False)
    parser.add_argument('--load', type=str, default=None)
    args = parser.parse_args()

    if args.seed is not None:
        misc.set_random_seed(args.seed)

    args.outdir = experiments.prepare_output_dir(args, args.outdir)

    print('Output files are saved in {}'.format(args.outdir))

    def make_env(process_idx, test):
        env = ale.ALE(args.rom,
                      use_sdl=args.use_sdl,
                      treat_life_lost_as_terminal=not test)
        if not test:
            misc.env_modifiers.make_reward_clipped(env, -1, 1)
        return env

    sample_env = make_env(0, test=False)
    action_space = sample_env.action_space
    assert isinstance(action_space, spaces.Discrete)

    # Define a model and its optimizer
    q_func = links.Sequence(links.NIPSDQNHead(), L.Linear(256, action_space.n),
                            DiscreteActionValue)
    opt = rmsprop_async.RMSpropAsync(lr=args.lr, eps=1e-1, alpha=0.99)
    opt.setup(q_func)

    # Make process-specific agents to diversify exploration
    def make_agent(process_idx):
        # Random epsilon assignment described in the original paper
        rand = random.random()
        if rand < 0.4:
            epsilon_target = 0.1
        elif rand < 0.7:
            epsilon_target = 0.01
        else:
            epsilon_target = 0.5
        explorer = explorers.LinearDecayEpsilonGreedy(
            1, epsilon_target, args.final_exploration_frames,
            action_space.sample)
        # Suppress the explorer logger
        explorer.logger.setLevel(logging.INFO)
        return nsq.NSQ(q_func,
                       opt,
                       t_max=5,
                       gamma=0.99,
                       i_target=40000,
                       explorer=explorer,
                       phi=dqn_phi)

    if args.demo:
        env = make_env(0, True)
        agent = make_agent(0)
        eval_stats = experiments.eval_performance(env=env,
                                                  agent=agent,
                                                  n_runs=args.eval_n_runs)
        print('n_runs: {} mean: {} median: {} stdev {}'.format(
            args.eval_n_runs, eval_stats['mean'], eval_stats['median'],
            eval_stats['stdev']))
    else:
        explorer = explorers.ConstantEpsilonGreedy(0.05, action_space.sample)

        # Linearly decay the learning rate to zero
        def lr_setter(env, agent, value):
            agent.optimizer.lr = value

        lr_decay_hook = experiments.LinearInterpolationHook(
            args.steps, args.lr, 0, lr_setter)

        experiments.train_agent_async(outdir=args.outdir,
                                      processes=args.processes,
                                      make_env=make_env,
                                      make_agent=make_agent,
                                      profile=args.profile,
                                      steps=args.steps,
                                      eval_n_runs=args.eval_n_runs,
                                      eval_interval=args.eval_interval,
                                      eval_explorer=explorer,
                                      global_step_hooks=[lr_decay_hook])
def main(args):
    import logging
    logging.basicConfig(level=logging.INFO, filename='log')

    if (type(args) is list):
        args = make_args(args)
    if not os.path.exists(args.outdir):
        os.makedirs(args.outdir)

    # Set a random seed used in ChainerRL.
    # If you use more than one processes, the results will be no longer
    # deterministic even with the same random seed.
    misc.set_random_seed(args.seed)

    # Set different random seeds for different subprocesses.
    # If seed=0 and processes=4, subprocess seeds are [0, 1, 2, 3].
    # If seed=1 and processes=4, subprocess seeds are [4, 5, 6, 7].
    process_seeds = np.arange(args.processes) + args.seed * args.processes
    assert process_seeds.max() < 2**31

    n_actions = gym.make(args.env).action_space.n

    if args.use_lstm:
        model = acer.ACERSharedModel(
            shared=links.Sequence(links.NIPSDQNHead(), L.LSTM(256, 256)),
            pi=links.Sequence(L.Linear(256, n_actions), SoftmaxDistribution),
            q=links.Sequence(L.Linear(256, n_actions), DiscreteActionValue),
        )
    else:
        model = acer.ACERSharedModel(
            shared=links.NIPSDQNHead(),
            pi=links.Sequence(L.Linear(256, n_actions), SoftmaxDistribution),
            q=links.Sequence(L.Linear(256, n_actions), DiscreteActionValue),
        )
    opt = rmsprop_async.RMSpropAsync(lr=7e-4, eps=4e-3, alpha=0.99)
    opt.setup(model)
    opt.add_hook(chainer.optimizer.GradientClipping(40))
    if args.weight_decay > 0:
        opt.add_hook(NonbiasWeightDecay(args.weight_decay))
    replay_buffer = EpisodicReplayBuffer(10**6 // args.processes)

    def phi(x):
        # Feature extractor
        return np.asarray(x, dtype=np.float32) / 255

    agent = acer.ACER(model,
                      opt,
                      t_max=args.t_max,
                      gamma=0.99,
                      replay_buffer=replay_buffer,
                      n_times_replay=args.n_times_replay,
                      replay_start_size=args.replay_start_size,
                      beta=args.beta,
                      phi=phi)

    def make_env(process_idx, test):
        # Use different random seeds for train and test envs
        process_seed = process_seeds[process_idx]
        env_seed = 2**31 - 1 - process_seed if test else process_seed
        env = atari_wrappers.wrap_deepmind(atari_wrappers.make_atari(
            args.env, max_frames=args.max_frames),
                                           episode_life=not test,
                                           clip_rewards=not test)
        env.seed(int(env_seed))
        if args.monitor:
            env = chainerrl.wrappers.Monitor(
                env, args.outdir, mode='evaluation' if test else 'training')
        if args.render:
            env = chainerrl.wrappers.Render(env)
        return env

    def make_env_check():
        # Use different random seeds for train and test envs
        env_seed = args.seed
        env = atari_wrappers.wrap_deepmind(atari_wrappers.make_atari(
            args.env, max_frames=args.max_frames),
                                           episode_life=True,
                                           clip_rewards=True)
        env.seed(int(env_seed))
        return env

    if args.load_agent:
        agent.load(args.load_agent)

    if (args.mode == 'train'):

        # Linearly decay the learning rate to zero
        def lr_setter(env, agent, value):
            agent.optimizer.lr = value

        lr_decay_hook = experiments.LinearInterpolationHook(
            args.steps, args.lr, 0, lr_setter)

        experiments.train_agent_async(
            agent=agent,
            outdir=args.outdir,
            processes=args.processes,
            make_env=make_env,
            profile=args.profile,
            steps=args.steps,
            eval_n_steps=None,
            eval_n_episodes=args.eval_n_runs,
            eval_interval=args.eval_interval,
            global_step_hooks=[lr_decay_hook],
            save_best_so_far_agent=False,
        )
    elif (args.mode == 'check'):
        return tools.make_video.check(env=make_env_check(),
                                      agent=agent,
                                      save_mp4=args.save_mp4)

    elif (args.mode == 'growth'):
        return tools.make_video.growth(env=make_env_check(),
                                       agent=agent,
                                       outdir=args.outdir,
                                       max_num=args.max_frames,
                                       save_mp4=args.save_mp4)
示例#10
0
def main():

    # Prevent numpy from using multiple threads
    os.environ['OMP_NUM_THREADS'] = '1'

    import logging
    logging.basicConfig(level=logging.DEBUG)

    parser = argparse.ArgumentParser()
    parser.add_argument('processes', type=int)
    parser.add_argument('rom', type=str)
    parser.add_argument('--seed', type=int, default=None)
    parser.add_argument('--outdir', type=str, default=None)
    parser.add_argument('--use-sdl', action='store_true')
    parser.add_argument('--t-max', type=int, default=5)
    parser.add_argument('--replay-start-size', type=int, default=10000)
    parser.add_argument('--n-times-replay', type=int, default=4)
    parser.add_argument('--max-episode-len', type=int, default=10000)
    parser.add_argument('--beta', type=float, default=1e-2)
    parser.add_argument('--profile', action='store_true')
    parser.add_argument('--steps', type=int, default=8 * 10**7)
    parser.add_argument('--lr', type=float, default=7e-4)
    parser.add_argument('--eval-frequency', type=int, default=10**6)
    parser.add_argument('--eval-n-runs', type=int, default=10)
    parser.add_argument('--weight-decay', type=float, default=0.0)
    parser.add_argument('--use-lstm', action='store_true')
    parser.add_argument('--demo', action='store_true', default=False)
    parser.add_argument('--load', type=str, default='')
    parser.set_defaults(use_sdl=False)
    parser.set_defaults(use_lstm=False)
    args = parser.parse_args()

    if args.seed is not None:
        misc.set_random_seed(args.seed)

    args.outdir = experiments.prepare_output_dir(args, args.outdir)

    print('Output files are saved in {}'.format(args.outdir))

    n_actions = ale.ALE(args.rom).number_of_actions

    if args.use_lstm:
        model = acer.ACERSharedModel(
            shared=links.Sequence(links.NIPSDQNHead(), L.LSTM(256, 256)),
            pi=links.Sequence(L.Linear(256, n_actions), SoftmaxDistribution),
            q=links.Sequence(L.Linear(256, n_actions), DiscreteActionValue),
        )
    else:
        model = acer.ACERSharedModel(
            shared=links.NIPSDQNHead(),
            pi=links.Sequence(L.Linear(256, n_actions), SoftmaxDistribution),
            q=links.Sequence(L.Linear(256, n_actions), DiscreteActionValue),
        )
    opt = rmsprop_async.RMSpropAsync(lr=7e-4, eps=4e-3, alpha=0.99)
    opt.setup(model)
    opt.add_hook(chainer.optimizer.GradientClipping(40))
    if args.weight_decay > 0:
        opt.add_hook(NonbiasWeightDecay(args.weight_decay))
    replay_buffer = EpisodicReplayBuffer(10**6 // args.processes)
    agent = acer.ACER(model,
                      opt,
                      t_max=args.t_max,
                      gamma=0.99,
                      replay_buffer=replay_buffer,
                      n_times_replay=args.n_times_replay,
                      replay_start_size=args.replay_start_size,
                      beta=args.beta,
                      phi=dqn_phi)

    if args.load:
        agent.load(args.load)

    def make_env(process_idx, test):
        env = ale.ALE(args.rom,
                      use_sdl=args.use_sdl,
                      treat_life_lost_as_terminal=not test)
        if not test:
            misc.env_modifiers.make_reward_clipped(env, -1, 1)

        return env

    if args.demo:
        env = make_env(0, True)
        mean, median, stdev = experiments.eval_performance(
            env=env, agent=agent, n_runs=args.eval_n_runs)
        print('n_runs: {} mean: {} median: {} stdev'.format(
            args.eval_n_runs, mean, median, stdev))
    else:
        experiments.train_agent_async(agent=agent,
                                      outdir=args.outdir,
                                      processes=args.processes,
                                      make_env=make_env,
                                      profile=args.profile,
                                      steps=args.steps,
                                      eval_n_runs=args.eval_n_runs,
                                      eval_frequency=args.eval_frequency,
                                      max_episode_len=args.max_episode_len)
示例#11
0
    def __init__(self, alg, env, model_path):
        self.alg = alg
        seed = 0
        n_actions = gym.make(env).action_space.n
        gpus = [-1]
        gpu = None
        misc.set_random_seed(seed, gpus=gpus)
        if alg == "DQN-C":
            model = links.Sequence(
                links.NatureDQNHead(),
                L.Linear(512, n_actions),
                DiscreteActionValue)
        if alg == "PPO":
            winit_last = chainer.initializers.LeCunNormal(1e-2)
            model = chainer.Sequential(
                L.Convolution2D(None, 32, 8, stride=4),
                F.relu,
                L.Convolution2D(None, 64, 4, stride=2),
                F.relu,
                L.Convolution2D(None, 64, 3, stride=1),
                F.relu,
                L.Linear(None, 512),
                F.relu,
                links.Branched(
                    chainer.Sequential(
                        L.Linear(None, n_actions, initialW=winit_last),
                        SoftmaxDistribution,
                    ),
                    L.Linear(None, 1),
                )
            )
        if alg == "C51":
            n_atoms = 51
            v_max = 10
            v_min = -10
            model = links.Sequence(
                links.NatureDQNHead(),
                DistributionalFCStateQFunctionWithDiscreteAction(
                    None, n_actions, n_atoms, v_min, v_max,
                    n_hidden_channels=0, n_hidden_layers=0),
            )
        if alg == "ACER":
            model = agents.acer.ACERSharedModel(
                shared=links.Sequence(
                    links.NIPSDQNHead(),
                    L.LSTM(256, 256)),
                pi=links.Sequence(
                    L.Linear(256, n_actions),
                    SoftmaxDistribution),
                q=links.Sequence(
                    L.Linear(256, n_actions),
                    DiscreteActionValue),
            )
        if alg == "A3C":
            model = A3CFF(n_actions)
        if alg == "Rainbow":
            n_atoms = 51
            v_max = 10
            v_min = -10
            model = DistributionalDuelingDQN(n_actions, n_atoms, v_min, v_max)
            links.to_factorized_noisy(model, sigma_scale=0.5)
        if alg == "IQN":
            model = agents.iqn.ImplicitQuantileQFunction(
                psi=chainerrl.links.Sequence(
                    L.Convolution2D(None, 32, 8, stride=4),
                    F.relu,
                    L.Convolution2D(None, 64, 4, stride=2),
                    F.relu,
                    L.Convolution2D(None, 64, 3, stride=1),
                    F.relu,
                    functools.partial(F.reshape, shape=(-1, 3136)),
                ),
                phi=chainerrl.links.Sequence(
                    chainerrl.agents.iqn.CosineBasisLinear(64, 3136),
                    F.relu,
                ),
                f=chainerrl.links.Sequence(
                    L.Linear(None, 512),
                    F.relu,
                    L.Linear(None, n_actions),
                ),
            )
        if alg in ["A3C"]:
            fake_obs = chainer.Variable(
                np.zeros((4, 84, 84), dtype=np.float32)[None],
                name='observation')
            with chainerrl.recurrent.state_reset(model):
                # The state of the model is reset again after drawing the graph
                variables = misc.collect_variables([model(fake_obs)])
                chainer.computational_graph.build_computational_graph(variables)
        elif alg in ["Rainbow", "DQN-C", "C51", "ACER", "PPO"]:
            variables = misc.collect_variables([model(np.zeros((4, 84, 84), dtype=np.float32)[None])])
            chainer.computational_graph.build_computational_graph(variables)
        else:
            fake_obs = np.zeros((4, 84, 84), dtype=np.float32)[None]
            fake_taus = np.zeros(32, dtype=np.float32)[None]
            variables = misc.collect_variables([model(fake_obs)(fake_taus)])

        def phi(x):
            # Feature extractor
            return np.asarray(x, dtype=np.float32) / 255

        opt = optimizers.RMSpropGraves()
        opt.setup(model)
        rbuf = replay_buffer.ReplayBuffer(1)
        if alg == "IQN":
            self.agent = agents.IQN(model, opt, rbuf, gpu=gpu, gamma=0.99, act_deterministically=True, explorer=None,
                                    replay_start_size=1, minibatch_size=1, target_update_interval=None, clip_delta=True,
                                    update_interval=4, phi=phi)
        if alg == "A3C":
            self.agent = a3c.A3C(model, opt, t_max=5, gamma=0.99, phi=phi, act_deterministically=True)
        if alg == "Rainbow":
            self.agent = agents.CategoricalDoubleDQN(model, opt, rbuf, gpu=gpu, gamma=0.99, explorer=None,
                                                     replay_start_size=1, minibatch_size=1, target_update_interval=None,
                                                     clip_delta=True, update_interval=4, phi=phi)
        if alg == "DQN-C":
            self.agent = agents.DQN(model, opt, rbuf, gpu=gpu, gamma=0.99, explorer=None, replay_start_size=1,
                                    minibatch_size=1, target_update_interval=None, clip_delta=True, update_interval=4,
                                    phi=phi)
        if alg == "C51":
            self.agent = agents.CategoricalDQN(
                model, opt, rbuf, gpu=gpu, gamma=0.99,
                explorer=None, replay_start_size=1,
                minibatch_size=1,
                target_update_interval=None,
                clip_delta=True,
                update_interval=4,
                phi=phi,
            )
        if alg == "ACER":
            self.agent = agents.acer.ACER(model, opt, t_max=5, gamma=0.99,
                                          replay_buffer=rbuf,
                                          n_times_replay=4,
                                          replay_start_size=1,
                                          act_deterministically=True,
                                          phi=phi
                                          )
        if alg == "PPO":
            self.agent = agents.PPO(model, opt, gpu=gpu, phi=phi, update_interval=4, minibatch_size=1, clip_eps=0.1,
                                    recurrent=False, act_deterministically=True)
        self.agent.load(os.path.join(model_path, 'chainer', alg, env.replace("NoFrameskip-v4", ""), 'final'))
示例#12
0
def main(args):
    import logging
    logging.basicConfig(level=logging.INFO, filename='log')

    if (type(args) is list):
        args = make_args(args)
    if not os.path.exists(args.outdir):
        os.makedirs(args.outdir)

    # Set a random seed used in ChainerRL.
    # If you use more than one processes, the results will be no longer
    # deterministic even with the same random seed.
    misc.set_random_seed(args.seed)

    # Set different random seeds for different subprocesses.
    # If seed=0 and processes=4, subprocess seeds are [0, 1, 2, 3].
    # If seed=1 and processes=4, subprocess seeds are [4, 5, 6, 7].
    process_seeds = np.arange(args.processes) + args.seed * args.processes
    assert process_seeds.max() < 2**31

    def make_env(process_idx, test):
        # Use different random seeds for train and test envs
        process_seed = process_seeds[process_idx]
        env_seed = 2**31 - 1 - process_seed if test else process_seed
        env = atari_wrappers.wrap_deepmind(atari_wrappers.make_atari(
            args.env, max_frames=args.max_frames),
                                           episode_life=not test,
                                           clip_rewards=not test)
        env.seed(int(env_seed))
        if test:
            # Randomize actions like epsilon-greedy in evaluation as well
            env = chainerrl.wrappers.RandomizeAction(env, 0.05)
        if args.monitor:
            env = chainerrl.wrappers.Monitor(
                env, args.outdir, mode='evaluation' if test else 'training')
        if args.render:
            env = chainerrl.wrappers.Render(env)
        return env

    sample_env = make_env(0, test=False)
    action_space = sample_env.action_space
    assert isinstance(action_space, spaces.Discrete)

    # Define a model and its optimizer
    q_func = links.Sequence(links.NIPSDQNHead(), L.Linear(256, action_space.n),
                            DiscreteActionValue)
    opt = rmsprop_async.RMSpropAsync(lr=args.lr, eps=1e-1, alpha=0.99)
    opt.setup(q_func)

    def phi(x):
        # Feature extractor
        return np.asarray(x, dtype=np.float32) / 255

    # Make process-specific agents to diversify exploration
    def make_agent(process_idx):
        # Random epsilon assignment described in the original paper
        rand = random.random()
        if rand < 0.4:
            epsilon_target = 0.1
        elif rand < 0.7:
            epsilon_target = 0.01
        else:
            epsilon_target = 0.5
        explorer = explorers.LinearDecayEpsilonGreedy(
            1, epsilon_target, args.final_exploration_frames,
            action_space.sample)
        # Suppress the explorer logger
        explorer.logger.setLevel(logging.INFO)
        return nsq.NSQ(q_func,
                       opt,
                       t_max=5,
                       gamma=0.99,
                       i_target=40000,
                       explorer=explorer,
                       phi=phi)

    if args.demo:
        env = make_env(0, True)
        agent = make_agent(0)
        eval_stats = experiments.eval_performance(env=env,
                                                  agent=agent,
                                                  n_steps=None,
                                                  n_episodes=args.eval_n_runs)
        print('n_runs: {} mean: {} median: {} stdev {}'.format(
            args.eval_n_runs, eval_stats['mean'], eval_stats['median'],
            eval_stats['stdev']))
    else:
        # Linearly decay the learning rate to zero
        def lr_setter(env, agent, value):
            agent.optimizer.lr = value

        lr_decay_hook = experiments.LinearInterpolationHook(
            args.steps, args.lr, 0, lr_setter)

        experiments.train_agent_async(
            outdir=args.outdir,
            processes=args.processes,
            make_env=make_env,
            make_agent=make_agent,
            profile=args.profile,
            steps=args.steps,
            eval_n_steps=None,
            eval_n_episodes=args.eval_n_runs,
            eval_interval=args.eval_interval,
            global_step_hooks=[lr_decay_hook],
            save_best_so_far_agent=False,
        )