示例#1
0
def dot(P, Q):

    P = Poly(P)
    Q = Poly(Q)
    if np.prod(P.shape) <= 1 or np.prod(Q.shape) <= 1:
        return P * Q
    return sum(P * Q, -1)
示例#2
0
def variable(dims=1):
    """
    Simple constructor to create single variables to create polynomials.

    Args:
        dims (int) : Number of dimensions in the array.

    Returns:
        (Poly) : Polynomial array with unit components in each dimension.

    Examples:
        >>> print(variable())
        q0
        >>> print(variable(3))
        [q0, q1, q2]
    """
    if dims == 1:
        return Poly({(1, ): np.array(1)}, dim=1, shape=())

    r = np.arange(dims, dtype=int)
    A = {}
    for i in range(dims):
        A[tuple(1 * (r == i))] = 1 * (r == i)

    return Poly(A, dim=dims, shape=(dims, ))
示例#3
0
def differential(poly, diffvar):
    """
    Polynomial differential operator.

    Args:
        poly (Poly) : Polynomial to be differentiated.
        diffvar (Poly) : Polynomial to differentiate by. Must be decomposed. If
                polynomial array, the output is the Jacobian matrix.

    Examples:
        >>> q0, q1 = chaospy.variable(2)
        >>> poly = chaospy.Poly([1, q0, q0*q1**2+1])
        >>> print(poly)
        [1, q0, q0q1^2+1]
        >>> print(differential(poly, q0))
        [0, 1, q1^2]
        >>> print(differential(poly, q1))
        [0, 0, 2q0q1]
    """
    poly = Poly(poly)
    diffvar = Poly(diffvar)

    if not chaospy.poly.caller.is_decomposed(diffvar):
        sum(differential(poly, chaospy.poly.caller.decompose(diffvar)))

    if diffvar.shape:
        return Poly([differential(poly, pol) for pol in diffvar])

    if diffvar.dim > poly.dim:
        poly = chaospy.poly.dimension.setdim(poly, diffvar.dim)
    else:
        diffvar = chaospy.poly.dimension.setdim(diffvar, poly.dim)

    qkey = diffvar.keys[0]

    core = {}
    for key in poly.keys:

        newkey = np.array(key) - np.array(qkey)

        if np.any(newkey < 0):
            continue
        newkey = tuple(newkey)
        core[newkey] = poly.A[key] * np.prod([
            fac(key[idx], exact=True) / fac(newkey[idx], exact=True)
            for idx in range(poly.dim)
        ])

    return Poly(core, poly.dim, poly.shape, poly.dtype)
示例#4
0
def prange(N=1, dim=1):
    """
    Constructor to create a range of polynomials where the exponent vary.

    Args:
        N (int) : Number of polynomials in the array.
        dim (int) : The dimension the polynomial should span.

    Returns:
        (Poly) : A polynomial array of length N containing simple polynomials
                with increasing exponent.

    Examples:
        >>> print(prange(4))
        [1, q0, q0^2, q0^3]

        >>> print(prange(4, dim=3))
        [1, q2, q2^2, q2^3]
    """
    A = {}
    r = np.arange(N, dtype=int)
    key = np.zeros(dim, dtype=int)
    for i in range(N):
        key[-1] = i
        A[tuple(key)] = 1 * (r == i)

    return Poly(A, dim, (N, ), int)
示例#5
0
def cutoff(P, *args):
    """
    Remove polynomial components with order outside a given interval.

    Args:
        P (Poly) : Input data.
        low (int, optional) : The lowest order that is allowed to be included.
                Defaults to 0.
        high (int) : The upper threshold for the cutoff range.

    Returns:
        (Poly) : The same as `P`, except that all terms that have a order not
                within the bound `low<=order<high` are removed.

    Examples:
        >>> P = prange(4, 1) + prange(4, 2)[::-1]
        >>> print(P)
        [q1^3+1, q1^2+q0, q0^2+q1, q0^3+1]
        >>> print(cutoff(P, 3))
        [1, q1^2+q0, q0^2+q1, 1]
        >>> print(cutoff(P, 1, 3))
        [0, q1^2+q0, q0^2+q1, 0]
    """
    if len(args) == 1:
        low, high = 0, args[0]
    else:
        low, high = args[:2]

    A = P.A
    B = {}
    for key in P.keys:
        if low <= np.sum(key) < high:
            B[key] = A[key]

    return Poly(B, P.dim, P.shape, P.dtype)
示例#6
0
def tricu(P, k=0):
    """Cross-diagonal upper triangle."""
    tri = np.sum(np.mgrid[[slice(0, _, 1) for _ in P.shape]], 0)
    tri = tri < len(tri) + k

    if isinstance(P, Poly):
        A = P.A.copy()
        B = {}
        for key in P.keys:
            B[key] = A[key] * tri
        return Poly(B, shape=P.shape, dim=P.dim, dtype=P.dtype)

    out = P * tri
    return out
示例#7
0
def differential(P, Q):
    """
    Polynomial differential operator.

    Args:
        P (Poly) : Polynomial to be differentiated.
        Q (Poly) : Polynomial to differentiate by. Must be decomposed. If
                polynomial array, the output is the Jacobian matrix.
    """
    P, Q = Poly(P), Poly(Q)

    if not poly.is_decomposed(Q):
        differential(poly.decompose(Q)).sum(0)

    if Q.shape:
        return Poly([differential(P, q) for q in Q])

    if Q.dim > P.dim:
        P = poly.setdim(P, Q.dim)
    else:
        Q = poly.setdim(Q, P.dim)

    qkey = Q.keys[0]

    A = {}
    for key in P.keys:

        newkey = np.array(key) - np.array(qkey)

        if np.any(newkey < 0):
            continue

        A[tuple(newkey)] = P.A[key]*np.prod([fac(key[i], \
            exact=True)/fac(newkey[i], exact=True) \
            for i in range(P.dim)])

    return Poly(A, P.dim, None)
示例#8
0
def swapdim(P, dim1=1, dim2=0):
    """
    Swap the dim between two variables.

    Args:
        P (Poly) : Input polynomial.
        dim1 (int) : First dim
        dim2 (int) : Second dim.

    Returns:
        (Poly) : Polynomial with swapped dimensions.

    Examples
    --------
        >>> x,y = variable(2)
        >>> P = x**4-y
        >>> print(P)
        q0^4-q1
        >>> print(swapdim(P))
        q1^4-q0
    """
    if not isinstance(P, Poly):
        return np.swapaxes(P, dim1, dim2)

    dim = P.dim
    shape = P.shape
    dtype = P.dtype

    if dim1 == dim2:
        return P

    m = max(dim1, dim2)
    if P.dim <= m:
        P = poly.setdim(P, m + 1)

    A = {}

    for key in P.keys:

        val = P.A[key]
        key = list(key)
        key[dim1], key[dim2] = key[dim2], key[dim1]
        A[tuple(key)] = val

    return Poly(A, dim, shape, dtype)
示例#9
0
def rolldim(P, n=1):
    """
    Roll the axes.

    Args:
        P (Poly) : Input polynomial.
        n (int) : The axis that after rolling becomes the 0th axis.

    Returns:
        (Poly) : Polynomial with new axis configuration.

    Examples:
        >>> x,y,z = variable(3)
        >>> P = x*x*x + y*y + z
        >>> print(P)
        q0^3+q1^2+q2
        >>> print(rolldim(P))
        q0^2+q2^3+q1
    """
    dim = P.dim
    shape = P.shape
    dtype = P.dtype
    A = dict(((key[n:] + key[:n], P.A[key]) for key in P.keys))
    return Poly(A, dim, shape, dtype)
示例#10
0
def basis(start, stop=None, dim=1, sort="G"):
    """
    Create an N-dimensional unit polynomial basis.

    Args:
        start (int, array_like) : the minimum polynomial to include.  If int is
                provided, set as lowest total order.  If array of int, set as
                lower order along each axis.
        stop (int, array_like, optional) : the maximum shape included. If
                omitted: stop <- start; start <- 0 If int is provided, set as
                largest total order.  If array of int, set as largest order
                along each axis.
        dim (int) : dim of the basis.  Ignored if array is provided in either
                start or stop.
        sort (str) : The polynomial ordering where the letters G, I and R can
                be used to set grade, inverse and reverse to the ordering.  For
                `basis(0, 2, 2, order)` we get:
                ------  ------------------
                order   output
                ------  ------------------
                ""      [1 y y^2 x xy x^2]
                "G"     [1 y x y^2 xy x^2]
                "I"     [x^2 xy x y^2 y 1]
                "R"     [1 x x^2 y xy y^2]
                "GIR"   [y^2 xy x^2 y x 1]
                ------  ------------------

    Returns:
        (Poly) : Polynomial array.

    Examples:
        >>> print(cp.basis(4,4,2))
        [q0^4, q0^3q1, q0^2q1^2, q0q1^3, q1^4]
        >>> print(cp.basis([1,1],[2,2]))
        [q0q1, q0^2q1, q0q1^2, q0^2q1^2]
    """
    if stop == None:
        start, stop = 0, start

    start = np.array(start, dtype=int)
    stop = np.array(stop, dtype=int)
    dim = max(start.size, stop.size, dim)
    indices = np.array(
        bertran.bindex(np.min(start), 2 * np.max(stop), dim, sort))

    if start.size == 1:
        bellow = np.sum(indices, -1) >= start.item()
    else:
        start = np.ones(dim, dtype=int) * start
        bellow = np.all(indices - start >= 0, -1)

    if stop.size == 1:
        above = np.sum(indices, -1) <= stop.item()
    else:
        stop = np.ones(dim, dtype=int) * stop
        above = np.all(stop - indices >= 0, -1)

    pool = list(indices[above * bellow])

    x = np.zeros(len(pool), dtype=int)
    x[0] = 1
    A = {}
    for I in pool:
        I = tuple(I)
        A[I] = x
        x = np.roll(x, 1)

    return Poly(A, dim)
示例#11
0
def tril(P, k=0):
    """Lower triangle of coefficients."""
    A = P.A.copy()
    for key in P.keys:
        A[key] = np.tril(P.A[key])
    return Poly(A, dim=P.dim, shape=P.shape)