示例#1
0
        y = elems.pop()
        y = float(y.rstrip())

        xs = [float(elem) for elem in elems]

        if int(y) == 0:
            class1.append(xs)
        else:
            class2.append(xs)

    class1 = np.array(class1)
    class2 = np.array(class2)

    return class1, class2


class1, class2 = read_data()
# plot the raw data
figure(0)
pl.plot(class1[:, 0], class1[:, 1], "xr")
pl.plot(class2[:, 0], class2[:, 1], "ob")

figure(1)

m = FisherClassifier(class1, class2)
m.fit()

pl.plot(np.dot(class1, m.w), [0] * class1.shape[0], "bo")
pl.plot(np.dot(class2, m.w), [0] * class2.shape[0], "r-")
pl.show()
示例#2
0
  f=open('..\\dataset\\bezdekIris.data', 'r')
  lines = [line.strip() for line in f.readlines()]
  random.shuffle(lines)
  f.close()

  lines = [line.split(',') for line in lines if line]
  class1 = np.array([line[:4] for line in lines[0:N] if line[-1] == 'Iris-setosa'], dtype=np.float)
  class2 = np.array([line[:4] for line in lines[0:N] if line[-1] != 'Iris-setosa'], dtype=np.float)

  class1_tests = np.array([line[:4] for line in lines[N:] if line[-1] == 'Iris-setosa'], dtype=np.float)
  class2_tests = np.array([line[:4] for line in lines[N:] if line[-1] != 'Iris-setosa'], dtype=np.float)
  return class1, class2, class1_tests, class2_tests

if __name__ == '__main__':
  c1, c2, c1test, c2test = read_data()
  m = FisherClassifier(c1, c2)
  m.fit()

  pl.plot(np.dot(c1, m.w), [0]*c1.shape[0], 'bo')
  pl.plot(np.dot(c2, m.w), [0]*c2.shape[0], 'r-')
  pl.show()

  error = 0
  for i in range(len(c1test)):
    y = m.predict(c1test[i])
    if y > 0:
      error += 1

  for i in range(len(c2test)):
    y = m.predict(c2test[i])
    if y < 0:
示例#3
0
        y = elems.pop()
        y = float(y.rstrip())

        xs = [float(elem) for elem in elems]

        if int(y) == 0:
            class1.append(xs)
        else:
            class2.append(xs)

    class1 = np.array(class1)
    class2 = np.array(class2)

    return class1, class2


class1, class2 = read_data()
# plot the raw data
figure(0)
pl.plot(class1[:, 0], class1[:, 1], 'xr')
pl.plot(class2[:, 0], class2[:, 1], 'ob')

figure(1)

m = FisherClassifier(class1, class2)
m.fit()

pl.plot(np.dot(class1, m.w), [0] * class1.shape[0], 'bo')
pl.plot(np.dot(class2, m.w), [0] * class2.shape[0], 'r-')
pl.show()