示例#1
0
 def params(self, p=0, q=0, bits=1024):
     global group
     group = IntegerGroupQ(0)
     if p == 0 or q == 0:
         group.paramgen(bits)
     else:
         group.p, group.q, group.r = p, q, 2
示例#2
0
文件: index.py 项目: tkbctf/tkbctf4
def init1():
    group = IntegerGroupQ()
    group.paramgen(bit)

    alpha = group.randomGen()
    key   = group.random()
    beta  = alpha ** key
    x     = [ odd_random(group) for _ in range(numbers['cards']) ]

    room = Room(request.environ.get('beaker.session'), False)

    try:
        room.get('win')
    except:
        room.set('win', 0)

    [room.set(n, v) for n, v in [('p', group.p), ('q', group.q), ('alpha', alpha), ('key', key), ('beta_i', beta), ('x', x)]]
    room.save()

    response.content_type = 'application/json'
    return json.dumps(map(toStr, {
        'p'     : group.p,
        'q'     : group.q,
        'alpha' : alpha,
        'beta'  : beta,
        'x'     : x,
    }))
示例#3
0
 def params(self, p=0, q=0, bits=1024):
     global group
     group = IntegerGroupQ(0)
     if p == 0 or q == 0:
         group.paramgen(bits)
     else:
         group.p, group.q, group.r = p, q, 2
示例#4
0
    class Protocol:
        def __init__(self):
            self.groupObj = IntegerGroupQ()
            self.groupObj.paramgen(256)
            self.signer = SignerBlindSignature(self.groupObj, 0, 0, 256)
            self.user = UserBlindSignature(self.signer.get_public_key())
            self.verify = BlindSignatureVerifier(self.signer.get_public_key())
            self.user = UserBlindSignature(self.signer.get_public_key())
            self.sig, self.e, self.message = None, None, None
            self.zeta, self.zeta1, self.rho = None, None, None
            self.omega, self.sigma1, self.sigma2 = None, None, None
            self.delta, self.mu, self.tmp1 = None, None, None
            self.tmp2, self.tmp3, self.tmp4 = None, None, None

        def setup_method(self, message=None):
            key = ECC.generate(curve='P-256')
            self.message = Conversion.OS2IP(key.public_key().export_key(
                format='DER')) if message is None else message
            challenge = self.signer.get_challenge()
            self.e = self.user.challenge_response(challenge, self.message)
            proofs = self.signer.get_proofs(self.e)
            self.sig = self.user.gen_signature(proofs)

        def values(self):
            self.zeta = self.sig.get('zeta')
            self.zeta1 = self.sig.get('zeta1')
            self.rho = self.sig.get('rho')
            self.omega = self.sig.get('omega')
            self.sigma1 = self.sig.get('sigma1')
            self.sigma2 = self.sig.get('sigma2')
            self.delta = self.sig.get('delta')
            self.mu = self.sig.get('mu')
            self.tmp1 = (self.verify.g**self.rho) * (
                self.verify.y**self.omega) % self.verify.p
            self.tmp2 = (self.verify.g**self.sigma1) * (
                self.zeta1**self.delta) % self.verify.p
            self.tmp3 = (self.verify.h**self.sigma2) * (
                (self.zeta / self.zeta1)**self.delta) % self.verify.p
            self.tmp4 = (self.verify.z**self.mu) * (self.zeta**
                                                    self.delta) % self.verify.p
示例#5
0
def main():
    nr_of_clients = 200
    G = IntegerGroupQ()
    G.paramgen(1024)
    g = G.randomG()
    clients_list = [Client(G, g, i) for i in range(nr_of_clients)]
    for client in clients_list:
        g_v , r = client.proof_x
        g_x, id = client.g_x, client.id
        hash = G.hash(g, g_v, g_x, id)
        assert g_v == (g**r) * (g_x **hash)
    g_xs = [client.g_x for client in clients_list]
    hashes = []
    for client in clients_list:
        client.compute_g_y(g_xs)
        hashes.append(client.answer())
    # print(hashes)
    answers = []
    for client in clients_list:
        assert G.hash(client.g_c_y) == hashes[client.id]
        answers.append(client.g_c_y)
    print(reduce(lambda x, y: x * y, answers, integer(1, G.p)) % G.p)
示例#6
0
Receiver chooses random poly S of degree k such that S(0) = alpha
Receiver's plan is to use R(x) = Q(x, S(x)) to learn P(alpha)
R(0) = Q(0, S(0)) = P(S(0)) = P(alpha)
"""
import random

from charm.toolbox.integergroup import IntegerGroupQ
from charm.core.math.integer import integer
from charm.core.math.integer import reduce as reduce_modulus
from utils import Poly, LI


SECURITY_PARAM = 20
G = IntegerGroupQ()
G.paramgen(SECURITY_PARAM)
g = G.randomGen()

k = 4
m = 4
d_p = 12 # Degree of P
d = d_p * k  # Degree of P_x

def main():
  # Receiver has alpha.
  alpha = G.random()

  # Sender has polynomial P.
  P = Poly([G.random() for _ in range(d_p + 1)])

  # Sender generates random masking poly P_x
示例#7
0
from charm.toolbox.integergroup import IntegerGroupQ, integer

G = IntegerGroupQ()
G.paramgen(1024)


def generate_sets(number_of_mutual, number_of_x, number_of_y):

    mutual_elements = generate_elements(number_of_mutual)

    X = generate_elements(number_of_y) + mutual_elements
    Y = [e for e in generate_elements(number_of_y) if e not in X] + mutual_elements

    return X, Y, mutual_elements


def generate_elements(number_of_elements):
    return [G.random() for _ in range(number_of_elements)]

def hash_elements(elements):
    return [G.hash(element) for element in elements]

def generate_Gs(X):

    # hash each element of the set
    gs = hash_elements(X)

    # pick a random a
    a = G.random()

    # generate big G = g ** a
示例#8
0
文件: pop.py 项目: Fadion96/Cloud
def setup(security_parameter):
    G = IntegerGroupQ()
    G.paramgen(security_parameter)
    g = G.randomG()
    sk = G.random()
    return G, g, sk
示例#9
0
class Params:

    def __init__(self, p=0, q=0, g=0, num_bits=2048):
        # IntegerGroupQ seems to be used as the Schnorr subgroup of order q
        self.group = IntegerGroupQ(0)
        self.num_bits = num_bits

        # Pick or set the Z_p and Z_q groups, along with the
        # residuosity parameter 'r' of the generator 'g' of Z_q
        if (p == 0 and q != 0) or (p != 0 and q == 0):
            raise ValueError('p and q must be either both set or unset')
        else:
            self.group.p, self.group.q, self.group.r = p, q, 2
            self.p = self.group.p
            self.q = self.group.q
            self.r = self.group.r
            self.g = g;


    def generate(self, num_bits=None):
        # Passing r=2 here, even though it defaults to 2
        if num_bits is not None:
            self.num_bits = num_bits
        self.group.paramgen(self.num_bits, 2)
        self.p = self.group.p
        self.q = self.group.q
        self.r = self.group.r
        # Randomly pick a generator g for Z_q
        # g \in [0, p), g = h^2 mod p, h \in [0, p)
        self.g = self.group.randomG()

    def __str__(self):
        return str({ 'p': str(self.p), 'q': str(self.q), 'g': str(self.g), 'r': str(self.r), 'num_bits': str(self.num_bits)})

    def setParams(self, params=None):
        global default
        if params is None:
            params = default

        self.p = params.p
        self.q = params.q
        self.g = params.g
        self.group = params.group

    def groupHash(self, msg, r):
        msg = Conversion.siginput2integer(msg)
        if isinstance(r, integer) == False:
            raise TypeError("Expected r to be of type 'integer', got " +
                type(r))

        return self.group.hash(msg, r)

    def serialize(self):
        return json.dumps({
            'p': serialize(self.p),
            'q': serialize(self.q),
            'g': serialize(self.g),
            'r': str(self.r),
            'num_bits': str(self.num_bits)
        })

    @classmethod
    def unserialize(cls, data):
        params = json.loads(data)
        p = deserialize(params['p'])
        q = deserialize(params['q'])
        r = int(params['r'])
        g = deserialize(params['g'])
        num_bits = int(params['num_bits'])

        # TODO: assert num_bits is 'correctish' w.r.t. p/q/g
        ret = Params(p, q, g, num_bits)
        ret.r = r
        return ret


    def __eq__(self, other):
        return isinstance(other, self.__class__) and\
            self.group.p == other.group.p and\
            self.group.q == other.group.q and\
            self.group.r == other.group.r and\
            self.p == other.p and\
            self.q == other.q and\
            getMod(self.g) == getMod(other.g) and\
            self.g == other.g

    def __ne__(self, other):
        return not self.__eq__(other)
        self.X = [self.group.random() for _ in range(self.N)]

        random.shuffle(self.T)
        self.T = self.T[:self.n]
        R = [(x, self.S(x) if i in self.T else self.group.random())
             for i, x in enumerate(self.X)]
        return R

    def getValue(self, Q):
        A = [xq for i, xq in enumerate(Q) if i in self.T]
        value = lagrange_interpolation(A, integer(0, self.group.q))
        return value


group = IntegerGroupQ()
group.paramgen(256)

# security parameter
k = 5

degree_of_polynomial = 10

m = 5

start = time.time()
# generate polynomial and masked polynomial with point (0,0)
alice = Alice(group, k, degree_of_polynomial)
bob = Bob(group, k)

# polynomial used to calculate P(A)
R = bob.generateR(m, degree_of_polynomial)
示例#11
0
class OneOfTwo(Protocol):
    def __init__(self):
        super().__init__(None)

        sender_states = {
            1: self.sender_state_1,
            3: self.sender_state_3,
            5: self.sender_state_5,
        }

        receiver_states = {
            2: self.receiver_state_2,
            4: self.receiver_state_4,
        }

        sender_trans = {1: 3, 3: 5}
        receiver_trans = {2: 4}

        self.group = IntegerGroupQ()
        self.group.paramgen(SECURITY_PARAM)

        Protocol.addPartyType(self, SENDER, sender_states, sender_trans, True)
        Protocol.addPartyType(self, RECEIVER, receiver_states, receiver_trans)

    def sender_state_1(self):
        print('Sender generates random value c and computes C = g ^ c.')

        g = self.group.randomGen()
        c = self.group.random()
        C = g**c
        super().setState(3)
        super().store(('g', g))
        return {'g': g, 'C': C}

    def receiver_state_2(self, data):
        print('Receiver got C, generates PKs and sends to sender.')
        C, g = data['C'], data['g']
        k = self.group.random()
        super().store(('g', g), ('k', k))
        PK_0 = g**k
        PK_1 = C / (g**k)
        super().setState(4)
        return {'PK_0': PK_0, 'PK_1': PK_1}

    def sender_state_3(self, data):
        PK_0, PK_1 = data['PK_0'], data['PK_1']
        print('Sender receives PKs, gets messages and calculates.')
        g = self.db['g']
        r0 = self.group.random()
        r1 = self.group.random()
        m0 = b"message 0"
        m1 = b"message 1"
        super().store(
            ('m0', m0),
            ('m1', m1),
        )
        c0 = (g**r0, xor(get_hash(PK_0**r0), m0).hex())
        c1 = (g**r1, xor(get_hash(PK_1**r1), m1).hex())
        super().setState(5)
        return {'c0': c0, 'c1': c1}

    def receiver_state_4(self, data):
        c0 = data['c0']
        k, = super().get(['k'])
        w0 = bytes.fromhex(c0[1])
        H = c0[0]**k
        decoded_msg = xor(get_hash(H), w0)
        super().setState(None)
        return {'decoded_msg': decoded_msg.hex()}

    def sender_state_5(self, data):
        decoded_msg = bytes.fromhex(data['decoded_msg'])
        m0, m1 = super().get(['m0', 'm1'])
        assert decoded_msg == m0
        super().setState(None)
        return None