# We will cover these years startyear = 1981 endyear = 2012 # We will make charts for 3 major Canadian cities cities = [ {'name': "Montreal", 'fillColor': "rgba(100,50,200,0.25)", 'strokeColor': "rgba(100,50,200,0.75)", 'pointColor': "rgba(100,50,200,0.75)"}, {'name': "Toronto", 'fillColor': "rgba(200,100,100,0.25)", 'strokeColor': "rgba(200,100,100,0.75)", 'pointColor': "rgba(200,100,100,0.75)"}, {'name': "Vancouver", 'fillColor': "rgba(100,200,100,0.25)", 'strokeColor': "rgba(100,200,100,0.75)", 'pointColor': "rgba(100,200,100,0.75)"}, ] # 3 of the charts will cover all 12 months months = ["Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"] # The first chart will show median temperatures over the years global_chart = chartjs.chart("Temperature medians for 1981 - 2012 in Celsius<br><font color='#6432C8'>Montreal</font>, <font color='#B1846B'>Toronto</font>, <font color='#6CCB6C'>Vancouver</font>", "Line", 1200, 600) global_chart.set_params(JSinline = False) # Each city will have a chart showing each month's median temperature montreal_chart = chartjs.chart("Montreal temperatures for 2012 in Celsius", "Line", 390, 200) montreal_chart.canvas = "montreal" montreal_chart.set_labels(months) toronto_chart = chartjs.chart("Toronto temperatures for 2012 in Celsius", "Line", 390, 200) toronto_chart.canvas = "toronto" toronto_chart.set_labels(months) vancouver_chart = chartjs.chart("Vancouver temperatures for 2012 in Celsius", "Line", 390, 200) vancouver_chart.canvas = "vancouver" vancouver_chart.set_labels(months) _startyear = startyear # Loop one city at a time
import chartjs # Make a pie chart mychart = chartjs.chart("Sample pie chart", "PolarArea") # Add labels, colors, highlights and data values mychart.set_labels(["Apple", "Orange", "Banana"]) mychart.set_colors(["#E24736", "#FF9438", "#FFF249"]) mychart.set_highlights(["#E07369", "#FFAC68", "#FFF293"]) mychart.add_dataset([5,2.3,10]) # Make the HTML file f = open("sample2.html", 'w') f.write(mychart.make_chart_full_html()) f.close()
import chartjs import csv # Create a new chart object and set some values mychart = chartjs.chart("Wind energy visualization (in million KW/h) for 2010-2012", "Line", 1600, 800) # Set some basic options mychart.set_params(barValueSpacing = 100) # Labels will be countries countries = [] # We will make 3 datasets for the last 3 years available in our CSV file values2012 = [] values2011 = [] values2010 = [] value = {'2010': 0, '2011': 0, '2012': 0} # Read data from sample.csv f = open("data/sample.csv", 'r', newline='') data = csv.reader(f, delimiter=',') next(data) # Skip headers # Iterate through the file, then add datasets every time the country name changes for line in data: if len(line) > 4 and float(line[4]) > 100: if line[0] not in countries: # Place the values of the last country in our lists if countries != []: values2012.append(value['2012']) values2011.append(value['2011'])
import chartjs import csv # Create a new chart object and set some values mychart = chartjs.chart( "Wind energy visualization (in million KW/h) for 2010-2012", "Line", 1600, 800) # Set some basic options mychart.set_params(barValueSpacing=100) # Labels will be countries countries = [] # We will make 3 datasets for the last 3 years available in our CSV file values2012 = [] values2011 = [] values2010 = [] value = {'2010': 0, '2011': 0, '2012': 0} # Read data from sample.csv f = open("data/sample.csv", 'r', newline='') data = csv.reader(f, delimiter=',') next(data) # Skip headers # Iterate through the file, then add datasets every time the country name changes for line in data: if len(line) > 4 and float(line[4]) > 100: if line[0] not in countries: # Place the values of the last country in our lists if countries != []:
import chartjs import time # Create a new chart object and set some values mychart = chartjs.chart("Performance Matrix", "Line", 1600, 800) # Set some basic options mychart.set_params(barValueSpacing=100) actions = ['login', 'fileupload', 'logout'] timestamp = [1, 5, 3] print(timestamp) # Set labels to be the countries found in our file mychart.set_labels(actions) # Add three datasets for the three years mychart.add_dataset(timestamp) mychart.set_params(fillColor="rgba(100,200,200,0.25)", strokeColor="rgba(100,200,200,0.75)", pointColor="rgba(100,200,200,0.75)") '''mychart.add_dataset(values2011) mychart.set_params(fillColor = "rgba(200,100,100,0.25)", strokeColor = "rgba(200,100,100,0.75)", pointColor = "rgba(200,100,100,0.75)") mychart.add_dataset(values2010)''' # Write sample.html f = open("sample.html", 'w') f.write(mychart.make_chart_full_html()) f.close()
'name': "Vancouver", 'fillColor': "rgba(100,200,100,0.25)", 'strokeColor': "rgba(100,200,100,0.75)", 'pointColor': "rgba(100,200,100,0.75)" }, ] # 3 of the charts will cover all 12 months months = [ "Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec" ] # The first chart will show median temperatures over the years global_chart = chartjs.chart( "Temperature medians for 1981 - 2012 in Celsius<br><font color='#6432C8'>Montreal</font>, <font color='#B1846B'>Toronto</font>, <font color='#6CCB6C'>Vancouver</font>", "Line", 1200, 600) global_chart.set_params(JSinline=False) # Each city will have a chart showing each month's median temperature montreal_chart = chartjs.chart("Montreal temperatures for 2012 in Celsius", "Line", 390, 200) montreal_chart.canvas = "montreal" montreal_chart.set_labels(months) toronto_chart = chartjs.chart("Toronto temperatures for 2012 in Celsius", "Line", 390, 200) toronto_chart.canvas = "toronto" toronto_chart.set_labels(months) vancouver_chart = chartjs.chart("Vancouver temperatures for 2012 in Celsius", "Line", 390, 200) vancouver_chart.canvas = "vancouver"