def parse( self, text: Text, time: Optional[datetime.datetime] = None, only_output_properties: bool = True, ) -> Dict[Text, Any]: """Parse the input text, classify it and return pipeline result. The pipeline result usually contains intent and entities.""" if not text: # Not all components are able to handle empty strings. So we need # to prevent that... This default return will not contain all # output attributes of all components, but in the end, no one # should pass an empty string in the first place. output = self.default_output_attributes() output["text"] = "" return output message = Message(text, self.default_output_attributes(), time=time) for component in self.pipeline: component.process(message, **self.context) output = self.default_output_attributes() output.update( message.as_dict(only_output_properties=only_output_properties)) return output
def process(self, message: Message, **kwargs: Any) -> None: self._check_spacy_doc(message) extracted = self.add_extractor_name(self.extract_entities(message)) message.set("entities", message.get("entities", []) + extracted, add_to_output=True)
def _parse_training_example(self, example): """Extract entities and synonyms, and convert to plain text.""" entities = self._find_entities_in_training_example(example) plain_text = re.sub(ent_regex, lambda m: m.groupdict()['entity_text'], example) self._add_synonyms(plain_text, entities) message = Message(plain_text, {'intent': self.current_title}) if len(entities) > 0: message.set('entities', entities) return message
def _combine_with_existing_features( message: Message, additional_features: Any, feature_name: Text = MESSAGE_VECTOR_FEATURE_NAMES[ MESSAGE_TEXT_ATTRIBUTE], ) -> Any: if message.get(feature_name) is not None: return np.concatenate( (message.get(feature_name), additional_features), axis=-1) else: return additional_features
def filter_trainable_entities( self, entity_examples: List[Message] ) -> List[Message]: """Filters out untrainable entity annotations. Creates a copy of entity_examples in which entities that have `extractor` set to something other than self.name (e.g. 'CRFEntityExtractor') are removed. """ filtered = [] for message in entity_examples: entities = [] for ent in message.get("entities", []): extractor = ent.get("extractor") if not extractor or extractor == self.name: entities.append(ent) data = message.data.copy() data["entities"] = entities filtered.append( Message( text=message.text, data=data, output_properties=message.output_properties, time=message.time, ) ) return filtered
def read_from_json(self, js, **kwargs): """Loads training data stored in the rasa NLU data format.""" validate_rasa_nlu_data(js) data = js['rasa_nlu_data'] common_examples = data.get("common_examples", []) intent_examples = data.get("intent_examples", []) entity_examples = data.get("entity_examples", []) entity_synonyms = data.get("entity_synonyms", []) regex_features = data.get("regex_features", []) entity_synonyms = transform_entity_synonyms(entity_synonyms) if intent_examples or entity_examples: logger.warn("DEPRECATION warning: your rasa data " "contains 'intent_examples' " "or 'entity_examples' which will be " "removed in the future. Consider " "putting all your examples " "into the 'common_examples' section.") all_examples = common_examples + intent_examples + entity_examples training_examples = [] for ex in all_examples: msg = Message.build(ex['text'], ex.get("intent"), ex.get("entities")) training_examples.append(msg) return TrainingData(training_examples, entity_synonyms, regex_features)
def read_from_json(self, js, **kwargs): # type: (Text, Any) -> TrainingData """Loads training data stored in the WIT.ai data format.""" training_examples = [] for s in js["data"]: entities = s.get("entities") if entities is None: continue text = s.get("text") intents = [e["value"] for e in entities if e["entity"] == 'intent'] intent = intents[0].strip("\"") if intents else None entities = [ e for e in entities if ("start" in e and "end" in e and e["entity"] != 'intent') ] for e in entities: # for some reason wit adds additional quotes around entity values e["value"] = e["value"].strip("\"") data = {} if intent: data["intent"] = intent if entities is not None: data["entities"] = entities training_examples.append(Message(text, data)) return TrainingData(training_examples)
def __additional_ner_features(message: Message) -> List[Any]: features = message.get("ner_features", []) tokens = message.get("tokens", []) if len(tokens) != len(features): warn_string = "Number of custom NER features ({}) does not match number of tokens ({})".format( len(features), len(tokens)) raise Exception(warn_string) # convert to python-crfsuite feature format features_out = [] for feature in features: feature_dict = { str(index): token_features for index, token_features in enumerate(feature) } converted = {"custom_ner_features": feature_dict} features_out.append(converted) return features_out
def _read_intent(self, intent_js, examples_js): """Reads the intent and examples from respective jsons.""" intent = intent_js.get("name") training_examples = [] for ex in examples_js: text, entities = self._join_text_chunks(ex['data']) training_examples.append(Message.build(text, intent, entities)) return TrainingData(training_examples)
def _from_crf_to_json(self, message: Message, entities: List[Any]) -> List[Dict[Text, Any]]: if self.pos_features: tokens = message.get("spacy_doc") else: tokens = message.get("tokens") if len(tokens) != len(entities): raise Exception( "Inconsistency in amount of tokens between crfsuite and message" ) if self.component_config["BILOU_flag"]: return self._convert_bilou_tagging_to_entity_result( message, tokens, entities) else: # not using BILOU tagging scheme, multi-word entities are split. return self._convert_simple_tagging_to_entity_result( tokens, entities)
def _from_json_to_crf( self, message: Message, entity_offsets: List[Tuple[int, int, Text]] ) -> List[Tuple[Optional[Text], Optional[Text], Text, Dict[Text, Any], Optional[Dict[Text, Any]], ]]: """Convert json examples to format of underlying crfsuite.""" if self.pos_features: from spacy.gold import GoldParse # pytype: disable=import-error doc_or_tokens = message.get("spacy_doc") gold = GoldParse(doc_or_tokens, entities=entity_offsets) ents = [l[5] for l in gold.orig_annot] else: doc_or_tokens = message.get("tokens") ents = self._bilou_tags_from_offsets(doc_or_tokens, entity_offsets) # collect badly annotated examples collected = [] for t, e in zip(doc_or_tokens, ents): if e == "-": collected.append(t) elif collected: collected_text = " ".join([t.text for t in collected]) logger.warning("Misaligned entity annotation for '{}' " "in sentence '{}' with intent '{}'. " "Make sure the start and end values of the " "annotated training examples end at token " "boundaries (e.g. don't include trailing " "whitespaces or punctuation)." "".format(collected_text, message.text, message.get("intent"))) collected = [] if not self.component_config["BILOU_flag"]: for i, label in enumerate(ents): if self._bilou_from_label(label) in {"B", "I", "U", "L"}: # removes BILOU prefix from label ents[i] = self._entity_from_label(label) return self._from_text_to_crf(message, ents)
def process(self, message: Message, **kwargs: Any) -> None: """Process incoming message and compute and set features""" if self.vectorizers is None: logger.error("There is no trained CountVectorizer: " "component is either not trained or " "didn't receive enough training data") else: message_text = self._get_message_text_by_attribute( message, attribute=MESSAGE_TEXT_ATTRIBUTE) bag = (self.vectorizers[MESSAGE_TEXT_ATTRIBUTE].transform( [message_text]).toarray().squeeze()) message.set( MESSAGE_VECTOR_FEATURE_NAMES[MESSAGE_TEXT_ATTRIBUTE], self._combine_with_existing_features( message, bag, feature_name=MESSAGE_VECTOR_FEATURE_NAMES[ MESSAGE_TEXT_ATTRIBUTE], ), )
def _from_text_to_crf( self, message: Message, entities: List[Text] = None ) -> List[Tuple[Optional[Text], Optional[Text], Text, Dict[Text, Any], Optional[Dict[Text, Any]], ]]: """Takes a sentence and switches it to crfsuite format.""" crf_format = [] if self.pos_features: tokens = message.get("spacy_doc") else: tokens = message.get("tokens") ner_features = (self.__additional_ner_features(message) if self.use_ner_features else None) for i, token in enumerate(tokens): pattern = self.__pattern_of_token(message, i) entity = entities[i] if entities else "N/A" tag = self.__tag_of_token(token) if self.pos_features else None custom_ner_features = ner_features[ i] if self.use_ner_features else None crf_format.append( (token.text, tag, entity, pattern, custom_ner_features)) return crf_format
def read_from_json(self, js, **kwargs): # type: (Text, Any) -> TrainingData """Loads training data stored in the LUIS.ai data format.""" training_examples = [] regex_features = [] # Simple check to ensure we support this luis data schema version if not js["luis_schema_version"].startswith("2"): raise Exception( "Invalid luis data schema version {}, should be 2.x.x. " "Make sure to use the latest luis version " "(e.g. by downloading your data again)." "".format(js["luis_schema_version"])) for r in js.get("regex_features", []): if r.get("activated", False): regex_features.append({ "name": r.get("name"), "pattern": r.get("pattern") }) for s in js["utterances"]: text = s.get("text") intent = s.get("intent") entities = [] for e in s.get("entities") or []: start, end = e["startPos"], e["endPos"] + 1 val = text[start:end] entities.append({ "entity": e["entity"], "value": val, "start": start, "end": end }) data = {"entities": entities} if intent: data["intent"] = intent training_examples.append(Message(text, data)) return TrainingData(training_examples, regex_features=regex_features)
def _convert_example(example: Message) -> List[Tuple[int, int, Text]]: def convert_entity(entity): return entity["start"], entity["end"], entity["entity"] return [convert_entity(ent) for ent in example.get("entities", [])]