def evaluate(model, df, target_label='Decision', task='test'): """ Parameters: model (built chefboost model): you should pass the return of fit function df (pandas data frame): data frame you would like to evaluate task (string): optionally you can pass this train, validation or test """ #-------------------------- if target_label != 'Decision': df = df.rename(columns={target_label: 'Decision'}) #if target is not the last column if df.columns[-1] != 'Decision': new_column_order = df.columns.drop('Decision').tolist() + ['Decision'] print(new_column_order) df = df[new_column_order] #-------------------------- functions.bulk_prediction(df, model) enableAdaboost = model["config"]["enableAdaboost"] if enableAdaboost == True: df['Decision'] = df['Decision'].astype(str) df['Prediction'] = df['Prediction'].astype(str) eval.evaluate(df, task=task)
def evaluate(model, df, task = 'test'): functions.bulk_prediction(df, model) enableAdaboost = model["config"]["enableAdaboost"] if enableAdaboost == True: df['Decision'] = df['Decision'].astype(str) df['Prediction'] = df['Prediction'].astype(str) eval.evaluate(df, task = task)
def evaluate(model, df, task='test'): """ Parameters: model (built chefboost model): you should pass the return of fit function df (pandas data frame): data frame you would like to evaluate task (string): optionally you can pass this train, validation or test """ functions.bulk_prediction(df, model) enableAdaboost = model["config"]["enableAdaboost"] if enableAdaboost == True: df['Decision'] = df['Decision'].astype(str) df['Prediction'] = df['Prediction'].astype(str) eval.evaluate(df, task=task)