type=str, help="matrix", default="chembl-IC50-346targets.mm") args = parser.parse_args() import tensorflow as tf import scipy.io import numpy as np import chemblnet as cn import chemblnet.vbutils as vb label = scipy.io.mmread(args.y) X = scipy.io.mmread(args.side).tocsr() # 109, 167, 168, 204, 214, 215 Ytrain, Ytest = cn.make_train_test(label, 0.2, seed=123456) Ytrain = Ytrain.tocsr() Ytest = Ytest.tocsr() Nfeat = X.shape[1] Ncomp = Ytrain.shape[0] Nprot = Ytrain.shape[1] print("St. deviation: %f" % np.std(Ytest.data)) # learning parameters Y_prec = 5.0 h1_size = 32 batch_size = 256 lrate = 1e-1 lrate_decay = 0.1 lrate_jump = 1.2
type=str, help="Network model", choices=["mlp"], default="mlp") args = parser.parse_args() import tensorflow as tf import scipy.io import numpy as np import chemblnet as cn label = scipy.io.mmread(args.y) X = scipy.io.mmread(args.side).tocsr() Ytrain, Ytest = cn.make_train_test(label, 0.2) Ytrain = Ytrain.tocsr() Ytest = Ytest.tocsr() Nfeat = X.shape[1] Nprot = Ytrain.shape[1] Ncmpd = Ytrain.shape[0] batch_size = args.batch_size h_size = args.hsize reg = args.reg res_reg = 3e-3 lrate = 0.001 lrate_decay = 0.1 #0.986 lrate_min = 3e-5 epsilon = 1e-5
choices = ["main", "linear", "non_linear_z", "residual", "residual2", "relu"], default = "main") parser.add_argument("--save", type=str, help="filename to save the model to (default)", default = None) args = parser.parse_args() import tensorflow as tf import scipy.io import numpy as np import chemblnet as cn from scipy.sparse import hstack label = scipy.io.mmread(args.y) X = scipy.io.mmread(args.side).tocsr() Ytrain, Ytest = cn.make_train_test(label, args.test_ratio) Ytrain = Ytrain.tocsr() Ytest = Ytest.tocsr() Nfeat = X.shape[1] Nprot = Ytrain.shape[1] Ncmpd = Ytrain.shape[0] batch_size = args.batch_size h_size = args.hsize reg = args.reg zreg = args.zreg dropout = args.dropout res_reg = 3e-3 lrate = 0.001 lrate_decay = 0.1 #0.986