def test_upper_only(self):
        # query[i] always matches target[i] so x[i] will always contain i
        x = search.threshold_tanimoto_search_arena(fps, fps, 0.9)
        x = list(x)

        # This only processes the upper-triangle, and not the diagonal
        y = search.threshold_tanimoto_search_symmetric(fps, 0.9, include_lower_triangle=False)


        rows = list(row.get_indices_and_scores() for row in y)
        row_sizes = map(len, rows)
        # Move elements to the lower triangle
        for rowno, (row, row_size) in enumerate(zip(rows, row_sizes)):
            for (colno, score) in row[:row_size]:
                assert colno > rowno, (rowno, colno)
                rows[colno].append( (rowno, score) )

            # Fill in the diagonal
            row.append((rowno, 1.0))

            # Put into a consistent order
            row.sort()
            
            # Match with the NxM algorithm
            expected_row = x[rowno]
            expected_row.reorder("increasing-index")

            self.assertEquals(row, list(expected_row), rowno)
示例#2
0
    def test_upper_only(self):
        # query[i] always matches target[i] so x[i] will always contain i
        x = search.threshold_tanimoto_search_arena(fps, fps, 0.9)
        x = list(x)

        # This only processes the upper-triangle, and not the diagonal
        y = search.threshold_tanimoto_search_symmetric(
            fps, 0.9, include_lower_triangle=False)

        rows = list(row.get_indices_and_scores() for row in y)
        row_sizes = map(len, rows)
        # Move elements to the lower triangle
        for rowno, (row, row_size) in enumerate(zip(rows, row_sizes)):
            for (colno, score) in row[:row_size]:
                assert colno > rowno, (rowno, colno)
                rows[colno].append((rowno, score))

            # Fill in the diagonal
            row.append((rowno, 1.0))

            # Put into a consistent order
            row.sort()

            # Match with the NxM algorithm
            expected_row = x[rowno]
            expected_row.reorder("increasing-index")

            self.assertEquals(row, list(expected_row), rowno)
    def test_upper_and_lower(self):
        # query[i] always matches target[i] so x[i] will always contain i
        x = search.threshold_tanimoto_search_arena(fps, fps, 0.9)

        # This only processes the upper-triangle, and not the diagonal
        y = search.threshold_tanimoto_search_symmetric(fps, 0.9)

        for i, (x_row, y_row) in enumerate(zip(x, y)):
            x_row = x_row.get_indices_and_scores()
            y_row = y_row.get_indices_and_scores()
            y_row.append((i, 1.0))
            x_row.sort()
            y_row.sort()

            self.assertEquals(x_row, y_row)
示例#4
0
    def test_upper_and_lower(self):
        # query[i] always matches target[i] so x[i] will always contain i
        x = search.threshold_tanimoto_search_arena(fps, fps, 0.9)

        # This only processes the upper-triangle, and not the diagonal
        y = search.threshold_tanimoto_search_symmetric(fps, 0.9)

        for i, (x_row, y_row) in enumerate(zip(x, y)):
            x_row = x_row.get_indices_and_scores()
            y_row = y_row.get_indices_and_scores()
            y_row.append((i, 1.0))
            x_row.sort()
            y_row.sort()

            self.assertEquals(x_row, y_row)
示例#5
0
    def threshold_tanimoto_search_arena(self, queries, threshold=0.7, arena_size=100):
        """Find the fingerprints which are similar to each of the query fingerprints

        DEPRECATED: Use `chemfp.search.threshold_tanimoto_search_arena`_
        or `chemfp.search.threshold_tanimoto_search_symmetric`_ instead.

        For each fingerprint in the `query_arena`, find all of the
        fingerprints in this arena which are at least `threshold`
        similar. The hits are returned as a `SearchResults` instance.
        
        :param query_arena: query arena
        :type query_arena: FingerprintArena
        :param threshold: minimum similarity threshold (default: 0.7)
        :type threshold: float between 0.0 and 1.0, inclusive
        :returns: SearchResults
        """
        return search.threshold_tanimoto_search_arena(queries, self, threshold)