args.save_dir = '/home/willlamb/checkpoints/dun' args.results_dir = '/home/willlamb/results/dun' args.wandb_proj = 'official_dun' args.wandb_name = 'dun' args.checkpoint_path = None # ensembling and samples args.ensemble_size = 1 args.ensemble_start_idx = 0 args.pytorch_seeds = [0, 1, 2, 3, 4] args.samples = 100 ### dun ### args.dun = True args.depth_min = 1 args.depth_max = 5 args.epochs = 0 args.epochs_dun = 350 args.batch_size_dun = 50 args.lr_dun_min = 1e-4 args.lr_dun_max = 1e-3 args.prior_sig_dun = 0.05 args.rho_min_dun = -5.5 args.rho_max_dun = -5 args.samples_dun = 5 args.presave_dun = 150
def new_noise(args: TrainArgs, logger: Logger = None) -> List[float]: """ Trains a model and returns test scores on the model checkpoint with the highest validation score. :param args: Arguments. :param logger: Logger. :return: A list of ensemble scores for each task. """ debug = info = print # Get data args.task_names = args.target_columns or get_task_names(args.data_path) data = get_data(path=args.data_path, args=args, logger=logger) args.num_tasks = data.num_tasks() args.features_size = data.features_size() # Split data debug(f'Splitting data with seed {args.seed}') train_data, val_data, test_data = split_data(data=data, split_type=args.split_type, sizes=args.split_sizes, seed=args.seed, args=args, logger=logger) if args.features_scaling: features_scaler = train_data.normalize_features(replace_nan_token=0) val_data.normalize_features(features_scaler) test_data.normalize_features(features_scaler) else: features_scaler = None args.train_data_size = len(train_data) # Initialize scaler and scale training targets by subtracting mean and dividing standard deviation (regression only) if args.dataset_type == 'regression': debug('Fitting scaler') train_smiles, train_targets = train_data.smiles(), train_data.targets() scaler = StandardScaler().fit(train_targets) scaled_targets = scaler.transform(train_targets).tolist() train_data.set_targets(scaled_targets) else: scaler = None # Get loss and metric functions loss_func = neg_log_like metric_func = get_metric_func(metric=args.metric) # Set up test set evaluation test_smiles, test_targets = test_data.smiles(), test_data.targets() sum_test_preds = np.zeros((len(test_smiles), args.num_tasks)) # Automatically determine whether to cache if len(data) <= args.cache_cutoff: cache = True num_workers = 0 else: cache = False num_workers = args.num_workers # Create data loaders train_data_loader = MoleculeDataLoader(dataset=train_data, batch_size=args.batch_size, num_workers=num_workers, cache=cache) val_data_loader = MoleculeDataLoader(dataset=val_data, batch_size=args.batch_size, num_workers=num_workers, cache=cache) test_data_loader = MoleculeDataLoader(dataset=test_data, batch_size=args.batch_size, num_workers=num_workers, cache=cache) ########################################### ########## Outer loop over ensemble members ########################################### for model_idx in range(args.ensemble_start_idx, args.ensemble_start_idx + args.ensemble_size): # load the model if (args.method == 'map') or (args.method == 'swag') or (args.method == 'sgld'): model = load_checkpoint(args.checkpoint_path + f'/model_{model_idx}/model.pt', device=args.device, logger=logger) if args.method == 'gp': args.num_inducing_points = 1200 fake_model = MoleculeModel(args) fake_model.featurizer = True feature_extractor = fake_model inducing_points = initial_inducing_points(train_data_loader, feature_extractor, args) gp_layer = GPLayer(inducing_points, args.num_tasks) model = load_checkpoint( args.checkpoint_path + f'/model_{model_idx}/DKN_model.pt', device=args.device, logger=None, template=DKLMoleculeModel(MoleculeModel(args, featurizer=True), gp_layer)) if args.method == 'dropR' or args.method == 'dropA': model = load_checkpoint(args.checkpoint_path + f'/model_{model_idx}/model.pt', device=args.device, logger=logger) if args.method == 'bbp': template = MoleculeModelBBP(args) for layer in template.children(): if isinstance(layer, BayesLinear): layer.init_rho(args.rho_min_bbp, args.rho_max_bbp) for layer in template.encoder.encoder.children(): if isinstance(layer, BayesLinear): layer.init_rho(args.rho_min_bbp, args.rho_max_bbp) model = load_checkpoint(args.checkpoint_path + f'/model_{model_idx}/model_bbp.pt', device=args.device, logger=None, template=template) if args.method == 'dun': args.prior_sig_dun = 0.05 args.depth_min = 1 args.depth_max = 5 args.rho_min_dun = -5.5 args.rho_max_dun = -5 args.log_cat_init = 0 template = MoleculeModelDUN(args) for layer in template.children(): if isinstance(layer, BayesLinear): layer.init_rho(args.rho_min_dun, args.rho_max_dun) for layer in template.encoder.encoder.children(): if isinstance(layer, BayesLinear): layer.init_rho(args.rho_min_dun, args.rho_max_dun) template.create_log_cat(args) model = load_checkpoint(args.checkpoint_path + f'/model_{model_idx}/model_dun.pt', device=args.device, logger=None, template=template) # make results_dir results_dir = os.path.join(args.results_dir, f'model_{model_idx}') makedirs(results_dir) # train_preds, train_targets train_preds = predict(model=model, data_loader=train_data_loader, args=args, scaler=scaler, test_data=False, bbp_sample=False) train_preds = np.array(train_preds) train_targets = np.array(train_targets) # compute tstats tstats = np.ones((12, 3)) for task in range(12): resid = train_preds[:, task] - train_targets[:, task] tstats[task] = np.array(stats.t.fit(resid, floc=0.0)) ################################## ########## Inner loop over samples ################################## for sample_idx in range(args.samples): # save down np.savez(os.path.join(results_dir, f'tstats_{sample_idx}'), tstats) print('done one')