def train(self, dataset_type: str, metric: str, save_dir: str, model_type: str = 'chemprop', flags: List[str] = None): # Set up command line arguments raw_args = self.create_raw_train_args( dataset_type=dataset_type, metric=metric, save_dir=save_dir, model_type=model_type, flags=flags ) # Train with patch('sys.argv', raw_args): command_line = ' '.join(raw_args[1:]) if model_type == 'chemprop': print(f'python train.py {command_line}') chemprop_train() else: print(f'python sklearn_train.py {command_line}') sklearn_train()
def train(self, dataset_type: str, metric: str, save_dir: str): # Set up command line arguments for training raw_train_args = self.create_raw_train_args( dataset_type=dataset_type, metric=metric, save_dir=save_dir ) # Train with patch('sys.argv', raw_train_args): chemprop_train()
"""Trains a chemprop model on a dataset.""" from chemprop.train import chemprop_train if __name__ == "__main__": chemprop_train()