示例#1
0
def show_prediction_channels(prediction_tensor):
    channel_images = []
    for chan in prediction_tensor:
        z = np.zeros(chan.shape)
        channel = np.stack([chan.cpu().detach().numpy(), z, z], axis=2)
        channel_images.append(channel)

    channels_images = np.array(channel_images)
    display_all(channel_images)
示例#2
0
    labels = labels.to(device)

    predictions = model(inputs)

    metrics = defaultdict(float)
    epoch_samples = inputs.size(0)
    loss = calc_loss(predictions, labels, metrics)
    print_metrics(metrics, epoch_samples, 'val')

    predictions = F.sigmoid(predictions)

    import helper
    input_images = [tensor_to_np(x) for x in inputs]
    mask_images = [helper.masks_to_colorimg(x) for x in labels]
    prediction_images = [helper.masks_to_colorimg(x) for x in predictions]
    chicken.display_all(input_images + mask_images + prediction_images)

    def pred_to_channels(single_pred):

        channel_images = []
        # z = np.zeros(pix.shape)

        for pix in single_pred:
            z = np.zeros(pix.shape)

            channel = np.stack([pix, z, z], axis=2)
            channel_images.append(channel)

        return np.array(channel_images)

    channel_images = pred_to_channels(predictions[0])
示例#3
0
    def display_all(self, images, figs_per_page=20, titles=None):

        images = chicken.squeeze(images)
        images = chicken.data2d_to_grayscale(images)
        chicken.display_all(images, figs_per_page, titles)
        return