db_session = db_funcs.init_db_conn_old(db_name=use_db,
                                           chd_base=db_class.Base,
                                           user=user,
                                           password=password)

#### STEP ONE: SELECT IMAGES ####
start_time = time.time()
# 1.) query some images
query_pd = db_funcs.query_euv_images(db_session=db_session,
                                     time_min=query_time_min - del_interval_dt,
                                     time_max=query_time_max + del_interval_dt)

#### STEP TWO: APPLY PRE-PROCESSING CORRECTIONS ####
# 1.) get dates
moving_avg_centers = synch_utils.get_dates(time_min=query_time_min,
                                           time_max=query_time_max,
                                           map_freq=map_freq)

# 3.) loop through center dates
for date_ind, center in enumerate(moving_avg_centers):
    # choose which images to use in the same way we choose images for synchronic download
    synch_images, cluster_method = synch_utils.select_synchronic_images(
        center, del_interval, query_pd, inst_list)
    if synch_images is None:
        # no images fall in the appropriate range, skip
        continue
    # apply corrections to those images
    date_pd, los_list, iit_list, use_indices, methods_list, ref_alpha, ref_x = \
        apply_lbc_iit.apply_ipp_2(db_session, center, synch_images, inst_list, hdf_data_dir,
                                  n_intensity_bins, R0)
示例#2
0
ref_instrument = [ref_inst, ]
euv_images = db_funcs.query_euv_images(db_session, time_min=calc_query_time_min, time_max=calc_query_time_max,
                                       instrument=ref_instrument, wavelength=wavelengths)
# get min and max carrington rotation
rot_max = euv_images.cr_rot.max()
rot_min = euv_images.cr_rot.min()

# calculate the parameter moving average centers
moving_avg_centers, moving_width = lbcc.moving_averages(calc_query_time_min, calc_query_time_max, weekday,
                                                        number_of_days)

# calculate image cadence centers
range_min_date = moving_avg_centers[0] - moving_width/2
range_max_date = moving_avg_centers[-1] + moving_width/2
image_centers = synch_utils.get_dates(
    time_min=range_min_date.astype(datetime.datetime),
    time_max=range_max_date.astype(datetime.datetime), map_freq=image_freq)

# query histograms
ref_hist_pd = db_funcs.query_hist(db_session=db_session, meth_id=method_id[1],
                                  n_intensity_bins=n_intensity_bins, lat_band=lat_band,
                                  time_min=calc_query_time_min - datetime.timedelta(days=number_of_days),
                                  time_max=calc_query_time_max + datetime.timedelta(days=number_of_days),
                                  instrument=ref_instrument, wavelength=wavelengths)
# keep only one observation-histogram per image_center window
keep_ind = lbcc.cadence_choose(ref_hist_pd.date_obs, image_centers, image_del)
ref_hist_pd = ref_hist_pd.iloc[keep_ind]

# convert binary to histogram data
mu_bin_edges, intensity_bin_edges, ref_full_hist = psi_d_types.binary_to_hist(hist_binary=ref_hist_pd,
                                                                              n_mu_bins=None,
示例#3
0
def calc_iit_coefficients(db_session,
                          inst_list,
                          ref_inst,
                          calc_query_time_min,
                          calc_query_time_max,
                          weekday=0,
                          number_of_days=180,
                          image_freq=2,
                          image_del=np.timedelta64(30, 'm'),
                          n_intensity_bins=200,
                          lat_band=[-np.pi / 2.4, np.pi / 2.4],
                          create=False,
                          wavelengths=None):
    # start time
    start_time = time.time()

    # create IIT method
    meth_name = "IIT"
    meth_desc = "IIT Fit Method"
    method_id = db_funcs.get_method_id(db_session,
                                       meth_name,
                                       meth_desc,
                                       var_names=None,
                                       var_descs=None,
                                       create=False)

    #### GET REFERENCE INFO FOR LATER USE ####
    # get index number of reference instrument
    ref_index = inst_list.index(ref_inst)
    # query euv images to get carrington rotation range
    ref_instrument = [
        ref_inst,
    ]
    euv_images = db_funcs.query_euv_images(db_session,
                                           time_min=calc_query_time_min,
                                           time_max=calc_query_time_max,
                                           instrument=ref_instrument,
                                           wavelength=wavelengths)
    # get min and max carrington rotation
    rot_max = euv_images.cr_rot.max()
    rot_min = euv_images.cr_rot.min()

    # calculate the moving average centers
    ref_moving_avg_centers, moving_width = lbcc.moving_averages(
        calc_query_time_min, calc_query_time_max, weekday, number_of_days)
    # calculate image cadence centers
    range_min_date = ref_moving_avg_centers[0] - moving_width / 2
    range_max_date = ref_moving_avg_centers[-1] + moving_width / 2
    image_centers = synch_utils.get_dates(
        time_min=range_min_date.astype(datetime.datetime),
        time_max=range_max_date.astype(datetime.datetime),
        map_freq=image_freq)

    # query histograms
    ref_hist_pd = db_funcs.query_hist(
        db_session=db_session,
        meth_id=method_id[1],
        n_intensity_bins=n_intensity_bins,
        lat_band=lat_band,
        time_min=calc_query_time_min - datetime.timedelta(days=number_of_days),
        time_max=calc_query_time_max + datetime.timedelta(days=number_of_days),
        instrument=ref_instrument,
        wavelength=wavelengths)
    # keep only one observation-histogram per image_center window
    keep_ind = lbcc.cadence_choose(ref_hist_pd.date_obs, image_centers,
                                   image_del)
    ref_hist_pd = ref_hist_pd.iloc[keep_ind]

    # convert binary to histogram data
    mu_bin_edges, intensity_bin_edges, ref_full_hist = psi_d_types.binary_to_hist(
        hist_binary=ref_hist_pd,
        n_mu_bins=None,
        n_intensity_bins=n_intensity_bins)

    # determine date of first AIA image
    min_ref_time = db_session.query(func.min(
        db_class.EUV_Images.date_obs)).filter(
            db_class.EUV_Images.instrument == ref_inst).all()
    base_ref_min = min_ref_time[0][0]
    base_ref_center = base_ref_min + datetime.timedelta(
        days=number_of_days) / 2
    base_ref_max = base_ref_center + datetime.timedelta(
        days=number_of_days) / 2
    if (calc_query_time_min - datetime.timedelta(days=7)) < base_ref_center:
        # generate histogram for first year of reference instrument
        ref_base_hist = ref_full_hist[:, (
            ref_hist_pd['date_obs'] >= str(base_ref_min)) & (
                ref_hist_pd['date_obs'] <= str(base_ref_max))]
    else:
        ref_base_hist = None

    for inst_index, instrument in enumerate(inst_list):
        # check if this is the reference instrument
        if inst_index == ref_index:
            # loop through moving average centers
            for date_index, center_date in enumerate(ref_moving_avg_centers):
                print("Starting calculations for", instrument, ":",
                      center_date)

                if center_date > ref_hist_pd.date_obs.max(
                ) or center_date < ref_hist_pd.date_obs.min():
                    print("Date is out of instrument range, skipping.")
                    continue

                # determine time range based off moving average centers
                min_date = center_date - moving_width / 2
                max_date = center_date + moving_width / 2
                # get the correct date range to use for image combos
                ref_pd_use = ref_hist_pd[
                    (ref_hist_pd['date_obs'] >= str(min_date))
                    & (ref_hist_pd['date_obs'] <= str(max_date))]

                # save alpha/x as [1, 0] for reference instrument
                alpha = 1
                x = 0
                db_funcs.store_iit_values(db_session, ref_pd_use, meth_name,
                                          meth_desc, [alpha, x], create)
        else:
            # query euv_images for correct carrington rotation
            query_instrument = [
                instrument,
            ]

            rot_images = db_funcs.query_euv_images_rot(
                db_session,
                rot_min=rot_min,
                rot_max=rot_max,
                instrument=query_instrument,
                wavelength=wavelengths)
            if rot_images.shape[0] == 0:
                print("No images in timeframe for ", instrument, ". Skipping")
                continue
            # get time minimum and maximum for instrument
            inst_time_min = rot_images.date_obs.min()
            inst_time_max = rot_images.date_obs.max()
            # if Stereo A or B has images before AIA, calc IIT for those weeks
            if inst_time_min > calc_query_time_min:
                all_images = db_funcs.query_euv_images(
                    db_session,
                    time_min=calc_query_time_min,
                    time_max=calc_query_time_max,
                    instrument=query_instrument,
                    wavelength=wavelengths)
                if all_images.date_obs.min() < inst_time_min:
                    inst_time_min = all_images.date_obs.min()

            moving_avg_centers, moving_width = lbcc.moving_averages(
                inst_time_min, inst_time_max, weekday, number_of_days)
            # calculate image cadence centers
            range_min_date = moving_avg_centers[0] - moving_width / 2
            range_max_date = moving_avg_centers[-1] + moving_width / 2
            image_centers = synch_utils.get_dates(
                time_min=range_min_date.astype(datetime.datetime),
                time_max=range_max_date.astype(datetime.datetime),
                map_freq=image_freq)

            inst_hist_pd = db_funcs.query_hist(
                db_session=db_session,
                meth_id=method_id[1],
                n_intensity_bins=n_intensity_bins,
                lat_band=lat_band,
                time_min=inst_time_min -
                datetime.timedelta(days=number_of_days),
                time_max=inst_time_max +
                datetime.timedelta(days=number_of_days),
                instrument=query_instrument,
                wavelength=wavelengths)
            # keep only one observation-histogram per image_center window
            keep_ind = lbcc.cadence_choose(inst_hist_pd.date_obs,
                                           image_centers, image_del)
            inst_hist_pd = inst_hist_pd.iloc[keep_ind]

            # convert binary to histogram data
            mu_bin_edges, intensity_bin_edges, inst_full_hist = psi_d_types.binary_to_hist(
                hist_binary=inst_hist_pd,
                n_mu_bins=None,
                n_intensity_bins=n_intensity_bins)
            # loops through moving average centers
            for date_index, center_date in enumerate(moving_avg_centers):
                print("Starting calculations for", instrument, ":",
                      center_date)

                if center_date > inst_hist_pd.date_obs.max(
                ) or center_date < inst_hist_pd.date_obs.min():
                    print("Date is out of instrument range, skipping.")
                    continue

                # determine time range based off moving average centers
                min_date = center_date - moving_width / 2
                max_date = center_date + moving_width / 2
                # get proper time-range of reference histograms
                if center_date <= base_ref_center:
                    # if date is earlier than reference (AIA) first year, use reference (AIA) first year
                    ref_hist_use = ref_base_hist
                else:
                    # get indices for calculation of reference histogram
                    ref_hist_ind = (ref_hist_pd['date_obs'] >= str(
                        min_date)) & (ref_hist_pd['date_obs'] <= str(max_date))
                    ref_hist_use = ref_full_hist[:, ref_hist_ind]

                # get the correct date range to use for the instrument histogram
                inst_hist_ind = (inst_hist_pd['date_obs'] >= str(min_date)) & (
                    inst_hist_pd['date_obs'] <= str(max_date))
                inst_pd_use = inst_hist_pd[inst_hist_ind]
                # get indices and histogram for calculation
                inst_hist_use = inst_full_hist[:, inst_hist_ind]

                # sum histograms
                hist_fit = inst_hist_use.sum(axis=1)
                hist_ref = ref_hist_use.sum(axis=1)

                # normalize fit histogram
                fit_sum = hist_fit.sum()
                norm_hist_fit = hist_fit / fit_sum

                # normalize reference histogram
                ref_sum = hist_ref.sum()
                norm_hist_ref = hist_ref / ref_sum

                # get reference/fit peaks
                ref_peak_index = np.argmax(
                    norm_hist_ref)  # index of max value of hist_ref
                ref_peak_val = norm_hist_ref[
                    ref_peak_index]  # max value of hist_ref
                fit_peak_index = np.argmax(
                    norm_hist_fit)  # index of max value of hist_fit
                fit_peak_val = norm_hist_fit[
                    fit_peak_index]  # max value of hist_fit
                # estimate correction coefficients that match fit_peak to ref_peak
                alpha_est = fit_peak_val / ref_peak_val
                x_est = intensity_bin_edges[
                    ref_peak_index] - alpha_est * intensity_bin_edges[
                        fit_peak_index]
                init_pars = np.asarray([alpha_est, x_est], dtype=np.float64)

                # calculate alpha and x
                alpha_x_parameters = iit.optim_iit_linear(norm_hist_ref,
                                                          norm_hist_fit,
                                                          intensity_bin_edges,
                                                          init_pars=init_pars)
                # save alpha and x to database
                db_funcs.store_iit_values(db_session, inst_pd_use, meth_name,
                                          meth_desc, alpha_x_parameters.x,
                                          create)

    end_time = time.time()
    tot_time = end_time - start_time
    time_tot = str(datetime.timedelta(minutes=tot_time))

    print(
        "Inter-instrument transformation fit parameters have been calculated and saved to the database."
    )
    print("Total elapsed time for IIT fit parameter calculation: " + time_tot)

    return None