def main(args):
    import logging
    logging.basicConfig(level=logging.INFO, filename='log')

    if (type(args) is list):
        args = make_args(args)
    if not os.path.exists(args.outdir):
        os.makedirs(args.outdir)

    # Set a random seed used in ChainerRL.
    # If you use more than one processes, the results will be no longer
    # deterministic even with the same random seed.
    misc.set_random_seed(args.seed)

    # Set different random seeds for different subprocesses.
    # If seed=0 and processes=4, subprocess seeds are [0, 1, 2, 3].
    # If seed=1 and processes=4, subprocess seeds are [4, 5, 6, 7].
    process_seeds = np.arange(args.processes) + args.seed * args.processes
    assert process_seeds.max() < 2**31

    n_actions = gym.make(args.env).action_space.n

    if args.use_lstm:
        model = acer.ACERSharedModel(
            shared=links.Sequence(links.NIPSDQNHead(), L.LSTM(256, 256)),
            pi=links.Sequence(L.Linear(256, n_actions), SoftmaxDistribution),
            q=links.Sequence(L.Linear(256, n_actions), DiscreteActionValue),
        )
    else:
        model = acer.ACERSharedModel(
            shared=links.NIPSDQNHead(),
            pi=links.Sequence(L.Linear(256, n_actions), SoftmaxDistribution),
            q=links.Sequence(L.Linear(256, n_actions), DiscreteActionValue),
        )
    opt = rmsprop_async.RMSpropAsync(lr=7e-4, eps=4e-3, alpha=0.99)
    opt.setup(model)
    opt.add_hook(chainer.optimizer.GradientClipping(40))
    if args.weight_decay > 0:
        opt.add_hook(NonbiasWeightDecay(args.weight_decay))
    replay_buffer = EpisodicReplayBuffer(10**6 // args.processes)

    def phi(x):
        # Feature extractor
        return np.asarray(x, dtype=np.float32) / 255

    agent = acer.ACER(model,
                      opt,
                      t_max=args.t_max,
                      gamma=0.99,
                      replay_buffer=replay_buffer,
                      n_times_replay=args.n_times_replay,
                      replay_start_size=args.replay_start_size,
                      beta=args.beta,
                      phi=phi)

    def make_env(process_idx, test):
        # Use different random seeds for train and test envs
        process_seed = process_seeds[process_idx]
        env_seed = 2**31 - 1 - process_seed if test else process_seed
        env = atari_wrappers.wrap_deepmind(atari_wrappers.make_atari(
            args.env, max_frames=args.max_frames),
                                           episode_life=not test,
                                           clip_rewards=not test)
        env.seed(int(env_seed))
        if args.monitor:
            env = chainerrl.wrappers.Monitor(
                env, args.outdir, mode='evaluation' if test else 'training')
        if args.render:
            env = chainerrl.wrappers.Render(env)
        return env

    def make_env_check():
        # Use different random seeds for train and test envs
        env_seed = args.seed
        env = atari_wrappers.wrap_deepmind(atari_wrappers.make_atari(
            args.env, max_frames=args.max_frames),
                                           episode_life=True,
                                           clip_rewards=True)
        env.seed(int(env_seed))
        return env

    if args.load_agent:
        agent.load(args.load_agent)

    if (args.mode == 'train'):

        # Linearly decay the learning rate to zero
        def lr_setter(env, agent, value):
            agent.optimizer.lr = value

        lr_decay_hook = experiments.LinearInterpolationHook(
            args.steps, args.lr, 0, lr_setter)

        experiments.train_agent_async(
            agent=agent,
            outdir=args.outdir,
            processes=args.processes,
            make_env=make_env,
            profile=args.profile,
            steps=args.steps,
            eval_n_steps=None,
            eval_n_episodes=args.eval_n_runs,
            eval_interval=args.eval_interval,
            global_step_hooks=[lr_decay_hook],
            save_best_so_far_agent=False,
        )
    elif (args.mode == 'check'):
        return tools.make_video.check(env=make_env_check(),
                                      agent=agent,
                                      save_mp4=args.save_mp4)

    elif (args.mode == 'growth'):
        return tools.make_video.growth(env=make_env_check(),
                                       agent=agent,
                                       outdir=args.outdir,
                                       max_num=args.max_frames,
                                       save_mp4=args.save_mp4)
示例#2
0
def main(args):
    import logging
    logging.basicConfig(level=logging.INFO, filename='log')

    if (type(args) is list):
        args = make_args(args)
    if not os.path.exists(args.outdir):
        os.makedirs(args.outdir)

    # Set a random seed used in ChainerRL.
    # If you use more than one process (i.e. processes > 1),
    # the results will be no longer be deterministic
    # even with the same random seed.
    misc.set_random_seed(args.seed)

    # Set different random seeds for different subprocesses.
    # If seed=0 and processes=4, subprocess seeds are [0, 1, 2, 3].
    # If seed=1 and processes=4, subprocess seeds are [4, 5, 6, 7].
    process_seeds = np.arange(args.processes) + args.seed * args.processes
    assert process_seeds.max() < 2**31

    n_actions = gym.make(args.env).action_space.n

    if args.use_lstm:
        model = A3CLSTM(n_actions)
    else:
        model = A3CFF(n_actions)

    # Draw the computational graph and save it in the output directory.
    fake_obs = chainer.Variable(np.zeros((4, 84, 84), dtype=np.float32)[None],
                                name='observation')
    with chainerrl.recurrent.state_reset(model):
        # The state of the model is reset again after drawing the graph
        chainerrl.misc.draw_computational_graph([model(fake_obs)],
                                                os.path.join(
                                                    args.outdir, 'model'))

    opt = rmsprop_async.RMSpropAsync(lr=7e-4, eps=1e-1, alpha=0.99)
    opt.setup(model)
    opt.add_hook(chainer.optimizer.GradientClipping(40))
    if args.weight_decay > 0:
        opt.add_hook(NonbiasWeightDecay(args.weight_decay))

    def phi(x):
        # Feature extractor
        return np.asarray(x, dtype=np.float32) / 255

    agent = a3c.A3C(model,
                    opt,
                    t_max=args.t_max,
                    gamma=0.99,
                    beta=args.beta,
                    phi=phi)

    def make_env(process_idx, test):
        # Use different random seeds for train and test envs
        process_seed = process_seeds[process_idx]
        env_seed = 2**31 - 1 - process_seed if test else process_seed
        env = atari_wrappers.wrap_deepmind(atari_wrappers.make_atari(
            args.env, max_frames=args.max_frames),
                                           episode_life=not test,
                                           clip_rewards=not test)
        env.seed(int(env_seed))
        if args.monitor:
            env = chainerrl.wrappers.Monitor(
                env, args.outdir, mode='evaluation' if test else 'training')
        if args.render:
            env = chainerrl.wrappers.Render(env)
        return env

    def make_env_check():
        # Use different random seeds for train and test envs
        env_seed = args.seed
        env = atari_wrappers.wrap_deepmind(atari_wrappers.make_atari(
            args.env, max_frames=args.max_frames),
                                           episode_life=True,
                                           clip_rewards=True)
        env.seed(int(env_seed))
        return env

    if args.load_agent:
        agent.load(args.load_agent)

    if (args.mode == 'train'):
        # Linearly decay the learning rate to zero
        def lr_setter(env, agent, value):
            agent.optimizer.lr = value

        lr_decay_hook = experiments.LinearInterpolationHook(
            args.steps, args.lr, 0, lr_setter)

        experiments.train_agent_async(
            agent=agent,
            outdir=args.outdir,
            processes=args.processes,
            make_env=make_env,
            profile=args.profile,
            steps=args.steps,
            step_offset=args.step_offset,
            checkpoint_freq=args.checkpoint_frequency,
            eval_n_steps=None,
            eval_n_episodes=args.eval_n_runs,
            eval_interval=args.eval_interval,
            global_step_hooks=[lr_decay_hook],
            save_best_so_far_agent=False,
            log_type=args.log_type)
    elif (args.mode == 'check'):
        return tools.make_video.check(env=make_env_check(),
                                      agent=agent,
                                      save_mp4=args.save_mp4)

    elif (args.mode == 'growth'):
        return tools.make_video.growth(env=make_env_check(),
                                       agent=agent,
                                       outdir=args.outdir,
                                       max_num=args.max_frames,
                                       save_mp4=args.save_mp4)
def main(args):
    import logging
    logging.basicConfig(level=logging.INFO, filename='log')

    if (type(args) is list):
        args = make_args(args)

    if not os.path.exists(args.outdir):
        os.makedirs(args.outdir)

    # Set a random seed used in ChainerRL.
    # If you use more than one processes, the results will be no longer
    # deterministic even with the same random seed.
    misc.set_random_seed(args.seed)

    # Set different random seeds for different subprocesses.
    # If seed=0 and processes=4, subprocess seeds are [0, 1, 2, 3].
    # If seed=1 and processes=4, subprocess seeds are [4, 5, 6, 7].
    process_seeds = np.arange(args.processes) + args.seed * args.processes
    assert process_seeds.max() < 2**32

    def make_env(process_idx, test):
        env = gym.make(args.env)
        # Use different random seeds for train and test envs
        process_seed = int(process_seeds[process_idx])
        env_seed = 2**32 - 1 - process_seed if test else process_seed
        env.seed(env_seed)
        # Cast observations to float32 because our model uses float32
        env = chainerrl.wrappers.CastObservationToFloat32(env)
        if args.monitor and process_idx == 0:
            env = chainerrl.wrappers.Monitor(env, args.outdir)
        if not test:
            # Scale rewards (and thus returns) to a reasonable range so that
            # training is easier
            env = chainerrl.wrappers.ScaleReward(env, args.reward_scale_factor)
        if args.render and process_idx == 0 and not test:
            env = chainerrl.wrappers.Render(env)
        return env

    sample_env = gym.make(args.env)
    timestep_limit = sample_env.spec.tags.get(
        'wrapper_config.TimeLimit.max_episode_steps')
    obs_space = sample_env.observation_space
    action_space = sample_env.action_space

    if isinstance(action_space, spaces.Box):
        model = acer.ACERSDNSeparateModel(
            pi=policies.FCGaussianPolicy(
                obs_space.low.size,
                action_space.low.size,
                n_hidden_channels=args.n_hidden_channels,
                n_hidden_layers=args.n_hidden_layers,
                bound_mean=True,
                min_action=action_space.low,
                max_action=action_space.high),
            v=v_functions.FCVFunction(obs_space.low.size,
                                      n_hidden_channels=args.n_hidden_channels,
                                      n_hidden_layers=args.n_hidden_layers),
            adv=q_functions.FCSAQFunction(
                obs_space.low.size,
                action_space.low.size,
                n_hidden_channels=args.n_hidden_channels // 4,
                n_hidden_layers=args.n_hidden_layers),
        )
    else:
        model = acer.ACERSeparateModel(
            pi=links.Sequence(
                L.Linear(obs_space.low.size, args.n_hidden_channels), F.relu,
                L.Linear(args.n_hidden_channels,
                         action_space.n,
                         initialW=LeCunNormal(1e-3)), SoftmaxDistribution),
            q=links.Sequence(
                L.Linear(obs_space.low.size, args.n_hidden_channels), F.relu,
                L.Linear(args.n_hidden_channels,
                         action_space.n,
                         initialW=LeCunNormal(1e-3)), DiscreteActionValue),
        )

    opt = rmsprop_async.RMSpropAsync(lr=args.lr,
                                     eps=args.rmsprop_epsilon,
                                     alpha=0.99)
    opt.setup(model)
    opt.add_hook(chainer.optimizer.GradientClipping(40))

    replay_buffer = EpisodicReplayBuffer(args.replay_capacity)
    agent = acer.ACER(model,
                      opt,
                      t_max=args.t_max,
                      gamma=0.99,
                      replay_buffer=replay_buffer,
                      n_times_replay=args.n_times_replay,
                      replay_start_size=args.replay_start_size,
                      disable_online_update=args.disable_online_update,
                      use_trust_region=True,
                      trust_region_delta=args.trust_region_delta,
                      truncation_threshold=args.truncation_threshold,
                      beta=args.beta)

    if args.load_agent:
        agent.load(args.load_agent)

    if (args.mode == 'train'):
        experiments.train_agent_async(agent=agent,
                                      outdir=args.outdir,
                                      processes=args.processes,
                                      make_env=make_env,
                                      profile=args.profile,
                                      steps=args.steps,
                                      step_offset=args.step_offset,
                                      checkpoint_freq=args.checkpoint_freq,
                                      log_type=args.log_type,
                                      eval_n_steps=None,
                                      eval_n_episodes=args.eval_n_runs,
                                      eval_interval=args.eval_interval,
                                      max_episode_len=timestep_limit)

    elif (args.mode == 'check'):
        from matplotlib import animation
        import matplotlib.pyplot as plt
        env = make_env(0, True)

        frames = []
        for i in range(3):
            obs = env.reset()
            done = False
            R = 0
            t = 0
            while not done and t < 200:
                frames.append(env.render(mode='rgb_array'))
                action = agent.act(obs)
                obs, r, done, _ = env.step(action)
                R += r
                t += 1
            print('test episode:', i, 'R:', R)
            agent.stop_episode()
        env.close()

        from IPython.display import HTML
        plt.figure(figsize=(frames[0].shape[1] / 72.0,
                            frames[0].shape[0] / 72.0),
                   dpi=72)
        patch = plt.imshow(frames[0])
        plt.axis('off')

        def animate(i):
            patch.set_data(frames[i])

        anim = animation.FuncAnimation(plt.gcf(),
                                       animate,
                                       frames=len(frames),
                                       interval=50)
        anim.save(args.save_mp4)
        return anim
示例#4
0
def main(args):
    import logging
    logging.basicConfig(level=logging.INFO, filename='log')

    if (type(args) is list):
        args = make_args(args)
    if not os.path.exists(args.outdir):
        os.makedirs(args.outdir)

    # Set a random seed used in ChainerRL.
    # If you use more than one processes, the results will be no longer
    # deterministic even with the same random seed.
    misc.set_random_seed(args.seed)

    # Set different random seeds for different subprocesses.
    # If seed=0 and processes=4, subprocess seeds are [0, 1, 2, 3].
    # If seed=1 and processes=4, subprocess seeds are [4, 5, 6, 7].
    process_seeds = np.arange(args.processes) + args.seed * args.processes
    assert process_seeds.max() < 2**31

    def make_env(process_idx, test):
        # Use different random seeds for train and test envs
        process_seed = process_seeds[process_idx]
        env_seed = 2**31 - 1 - process_seed if test else process_seed
        env = atari_wrappers.wrap_deepmind(atari_wrappers.make_atari(
            args.env, max_frames=args.max_frames),
                                           episode_life=not test,
                                           clip_rewards=not test)
        env.seed(int(env_seed))
        if test:
            # Randomize actions like epsilon-greedy in evaluation as well
            env = chainerrl.wrappers.RandomizeAction(env, 0.05)
        if args.monitor:
            env = chainerrl.wrappers.Monitor(
                env, args.outdir, mode='evaluation' if test else 'training')
        if args.render:
            env = chainerrl.wrappers.Render(env)
        return env

    sample_env = make_env(0, test=False)
    action_space = sample_env.action_space
    assert isinstance(action_space, spaces.Discrete)

    # Define a model and its optimizer
    q_func = links.Sequence(links.NIPSDQNHead(), L.Linear(256, action_space.n),
                            DiscreteActionValue)
    opt = rmsprop_async.RMSpropAsync(lr=args.lr, eps=1e-1, alpha=0.99)
    opt.setup(q_func)

    def phi(x):
        # Feature extractor
        return np.asarray(x, dtype=np.float32) / 255

    # Make process-specific agents to diversify exploration
    def make_agent(process_idx):
        # Random epsilon assignment described in the original paper
        rand = random.random()
        if rand < 0.4:
            epsilon_target = 0.1
        elif rand < 0.7:
            epsilon_target = 0.01
        else:
            epsilon_target = 0.5
        explorer = explorers.LinearDecayEpsilonGreedy(
            1, epsilon_target, args.final_exploration_frames,
            action_space.sample)
        # Suppress the explorer logger
        explorer.logger.setLevel(logging.INFO)
        return nsq.NSQ(q_func,
                       opt,
                       t_max=5,
                       gamma=0.99,
                       i_target=40000,
                       explorer=explorer,
                       phi=phi)

    if args.demo:
        env = make_env(0, True)
        agent = make_agent(0)
        eval_stats = experiments.eval_performance(env=env,
                                                  agent=agent,
                                                  n_steps=None,
                                                  n_episodes=args.eval_n_runs)
        print('n_runs: {} mean: {} median: {} stdev {}'.format(
            args.eval_n_runs, eval_stats['mean'], eval_stats['median'],
            eval_stats['stdev']))
    else:
        # Linearly decay the learning rate to zero
        def lr_setter(env, agent, value):
            agent.optimizer.lr = value

        lr_decay_hook = experiments.LinearInterpolationHook(
            args.steps, args.lr, 0, lr_setter)

        experiments.train_agent_async(
            outdir=args.outdir,
            processes=args.processes,
            make_env=make_env,
            make_agent=make_agent,
            profile=args.profile,
            steps=args.steps,
            eval_n_steps=None,
            eval_n_episodes=args.eval_n_runs,
            eval_interval=args.eval_interval,
            global_step_hooks=[lr_decay_hook],
            save_best_so_far_agent=False,
        )
def main(args):
    import logging
    logging.basicConfig(level=logging.INFO, stream=sys.stdout, format='')

    if (type(args) is list):
        args = make_args(args)

    if not os.path.exists(args.outdir):
        os.makedirs(args.outdir)

    # Set a random seed used in ChainerRL.
    # If you use async training (--train-async), the results will be no longer
    # deterministic even with the same random seed.
    misc.set_random_seed(args.seed, gpus=(args.gpu, ))

    if args.train_async:
        # Set different random seeds for different subprocesses.
        # If seed=0 and processes=4, subprocess seeds are [0, 1, 2, 3].
        # If seed=1 and processes=4, subprocess seeds are [4, 5, 6, 7].
        process_seeds = np.arange(args.processes) + args.seed * args.processes
        assert process_seeds.max() < 2**32

    def make_env(process_idx, test):
        env = gym.make(args.env)
        # Use different random seeds for train and test envs
        if args.train_async:
            process_seed = int(process_seeds[process_idx])
            env_seed = 2**32 - 1 - process_seed if test else process_seed
        else:
            env_seed = 2**32 - 1 - args.seed if test else args.seed
        env.seed(env_seed)
        # Cast observations to float32 because our model uses float32
        env = chainerrl.wrappers.CastObservationToFloat32(env)
        if args.monitor and process_idx == 0:
            env = chainerrl.wrappers.Monitor(env, args.outdir)
        if not test:
            # Scale rewards (and thus returns) to a reasonable range so that
            # training is easier
            env = chainerrl.wrappers.ScaleReward(env, args.reward_scale_factor)
        if args.render and process_idx == 0 and not test:
            env = chainerrl.wrappers.Render(env)
        return env

    sample_env = gym.make(args.env)
    timestep_limit = sample_env.spec.tags.get(
        'wrapper_config.TimeLimit.max_episode_steps')
    obs_space = sample_env.observation_space
    action_space = sample_env.action_space

    # Switch policy types accordingly to action space types
    if isinstance(action_space, gym.spaces.Box):
        model = chainerrl.agents.pcl.PCLSeparateModel(
            pi=chainerrl.policies.FCGaussianPolicy(
                obs_space.low.size,
                action_space.low.size,
                n_hidden_channels=args.n_hidden_channels,
                n_hidden_layers=args.n_hidden_layers,
                bound_mean=True,
                min_action=action_space.low,
                max_action=action_space.high,
                var_wscale=1e-3,
                var_bias=1,
                var_type='diagonal',
            ),
            v=chainerrl.v_functions.FCVFunction(
                obs_space.low.size,
                n_hidden_channels=args.n_hidden_channels,
                n_hidden_layers=args.n_hidden_layers,
            ))
    else:
        model = chainerrl.agents.pcl.PCLSeparateModel(
            pi=chainerrl.policies.FCSoftmaxPolicy(
                obs_space.low.size,
                action_space.n,
                n_hidden_channels=args.n_hidden_channels,
                n_hidden_layers=args.n_hidden_layers),
            v=chainerrl.v_functions.FCVFunction(
                obs_space.low.size,
                n_hidden_channels=args.n_hidden_channels,
                n_hidden_layers=args.n_hidden_layers,
            ),
        )

    if not args.train_async and args.gpu >= 0:
        chainer.cuda.get_device_from_id(args.gpu).use()
        model.to_gpu(args.gpu)

    if args.train_async:
        opt = rmsprop_async.RMSpropAsync(lr=args.lr, alpha=0.99)
    else:
        opt = chainer.optimizers.Adam(alpha=args.lr)
    opt.setup(model)

    if args.prioritized_replay:
        replay_buffer = \
            chainerrl.replay_buffer.PrioritizedEpisodicReplayBuffer(
                capacity=5 * 10 ** 3,
                uniform_ratio=0.1,
                default_priority_func=exp_return_of_episode,
                wait_priority_after_sampling=False,
                return_sample_weights=False)
    else:
        replay_buffer = chainerrl.replay_buffer.EpisodicReplayBuffer(
            capacity=5 * 10**3)

    agent = chainerrl.agents.PCL(
        model,
        opt,
        replay_buffer=replay_buffer,
        t_max=args.t_max,
        gamma=0.99,
        tau=args.tau,
        rollout_len=args.rollout_len,
        n_times_replay=args.n_times_replay,
        replay_start_size=args.replay_start_size,
        batchsize=args.batchsize,
        train_async=args.train_async,
        disable_online_update=args.disable_online_update,
        backprop_future_values=args.backprop_future_values,
    )

    if args.load_agent:
        agent.load(args.load_agent)

    if (args.mode == 'train'):
        if args.train_async:
            experiments.train_agent_async(agent=agent,
                                          outdir=args.outdir,
                                          processes=args.processes,
                                          make_env=make_env,
                                          profile=args.profile,
                                          steps=args.steps,
                                          step_offset=args.step_offset,
                                          eval_n_steps=None,
                                          eval_n_episodes=args.eval_n_runs,
                                          eval_interval=args.eval_interval,
                                          max_episode_len=timestep_limit)
            if args.save_agent:
                agent.save(args.save_agent)
        else:
            experiments.train_agent_with_evaluation(
                agent=agent,
                env=make_env(0, test=False),
                eval_env=make_env(0, test=True),
                outdir=args.outdir,
                steps=args.steps,
                step_offset=args.step_offset,
                checkpoint_freq=args.checkpoint_freq,
                eval_n_steps=None,
                eval_n_episodes=args.eval_n_runs,
                eval_interval=args.eval_interval,
                train_max_episode_len=timestep_limit)
    elif (args.mode == 'check'):
        from matplotlib import animation
        import matplotlib.pyplot as plt

        frames = []
        for i in range(3):
            obs = env.reset()
            done = False
            R = 0
            t = 0
            while not done and t < 200:
                frames.append(env.render(mode='rgb_array'))
                action = agent.act(obs)
                obs, r, done, _ = env.step(action)
                R += r
                t += 1
            print('test episode:', i, 'R:', R)
            agent.stop_episode()
        env.close()

        from IPython.display import HTML
        plt.figure(figsize=(frames[0].shape[1] / 72.0,
                            frames[0].shape[0] / 72.0),
                   dpi=72)
        patch = plt.imshow(frames[0])
        plt.axis('off')

        def animate(i):
            patch.set_data(frames[i])

        anim = animation.FuncAnimation(plt.gcf(),
                                       animate,
                                       frames=len(frames),
                                       interval=50)
        anim.save(args.outdir + '/test.mp4')
        return anim