示例#1
0
 def test_completion_fu(self):
     L = cp.cspmatrix(self.symb) + self.A
     cp.cholesky(L)
     L2 = L.copy()
     cp.projected_inverse(L2)
     cp.completion(L2, factored_updates=True)
     diff = list((L.spmatrix() - L2.spmatrix()).V)
     self.assertAlmostEqualLists(diff, len(diff) * [0.0])
示例#2
0
 def test_completion_fu(self):
     L = cp.cspmatrix(self.symb) + self.A
     cp.cholesky(L)
     L2 = L.copy()
     cp.projected_inverse(L2)
     cp.completion(L2, factored_updates = True)
     diff = list((L.spmatrix()-L2.spmatrix()).V)
     self.assertAlmostEqualLists(diff, len(diff)*[0.0])
示例#3
0
def mk_rand(V, cone='posdef', seed=0):
    """
    Generates random matrix U with sparsity pattern V.
    - U is positive definite if cone is 'posdef'.
    - U is completable if cone is 'completable'.
    """
    if not (cone == 'posdef' or cone == 'completable'):
        raise ValueError, "cone must be 'posdef' (default) or 'completable' "

    from cvxopt import amd
    setseed(seed)
    n = V.size[0]

    U = +V
    U.V *= 0.0
    for i in xrange(n):
        u = normal(n, 1) / sqrt(n)
        base.syrk(u, U, beta=1.0, partial=True)

    # test if U is in cone: if not, add multiple of identity
    t = 0.1
    Ut = +U
    p = amd.order(Ut)
    # Vc, NF = chompack.embed(U,p)
    symb = chompack.symbolic(U, p)
    Vc = chompack.cspmatrix(symb) + U
    while True:
        # Uc = chompack.project(Vc,Ut)
        Uc = chompack.cspmatrix(symb) + Ut
        try:
            if cone == 'posdef':
                # positive definite?
                # Y = chompack.cholesky(Uc)
                Y = Uc.copy()
                chompack.cholesky(Y)
            elif cone == 'completable':
                # completable?
                # Y = chompack.completion(Uc)
                Y = Uc.copy()
                chompack.completion(Y)
            # Success: Ut is in cone
            U = +Ut
            break
        except:
            Ut = U + spmatrix(t, xrange(n), xrange(n), (n, n))
            t *= 2.0
    return U
示例#4
0
文件: base.py 项目: cvxopt/smcp
def mk_rand(V,cone='posdef',seed=0):
    """
    Generates random matrix U with sparsity pattern V.
    - U is positive definite if cone is 'posdef'.
    - U is completable if cone is 'completable'.
    """
    if not (cone=='posdef' or cone=='completable'):
        raise ValueError("cone must be 'posdef' (default) or 'completable' ")

    from cvxopt import amd
    setseed(seed)
    n = V.size[0]

    U = +V
    U.V *= 0.0
    for i in range(n):
        u = normal(n,1)/sqrt(n)
        base.syrk(u,U,beta=1.0,partial=True)

    # test if U is in cone: if not, add multiple of identity
    t = 0.1; Ut = +U
    p = amd.order(Ut)
    # Vc, NF = chompack.embed(U,p)
    symb = chompack.symbolic(U,p)
    Vc = chompack.cspmatrix(symb) + U
    while True:
        # Uc = chompack.project(Vc,Ut)
        Uc = chompack.cspmatrix(symb) + Ut
        try:
            if cone=='posdef':
                # positive definite?
                # Y = chompack.cholesky(Uc)
                Y = Uc.copy()
                chompack.cholesky(Y)
            elif cone=='completable':
                # completable?
                # Y = chompack.completion(Uc)
                Y = Uc.copy()
                chompack.completion(Y)
            # Success: Ut is in cone
            U = +Ut
            break
        except:
            Ut = U + spmatrix(t,range(n),range(n),(n,n))
            t*=2.0
    return U
示例#5
0
文件: base.py 项目: cvxopt/smcp
def completion(X):
    """
    Returns maximum-determinant positive definite completion of X
    if it exists, and otherwise an exception is raised.
    """
    from cvxopt.amd import order
    n = X.size[0]
    Xt = chompack.tril(X)
    p = order(Xt)
    # Xc,N = chompack.embed(Xt,p)
    # L = chompack.completion(Xc)
    symb = chompack.symbolic(Xt,p)
    L = chompack.cspmatrix(symb) + Xt
    chompack.completion(L)
    Xt = matrix(0.,(n,n))
    Xt[::n+1] = 1.
    # chompack.solve(L, Xt, mode=0)
    # chompack.solve(L, Xt, mode=1)
    chompack.trsm(L, Xt)
    chompack.trsm(L, Xt, trans = 'T')
    return Xt
示例#6
0
def completion(X):
    """
    Returns maximum-determinant positive definite completion of X
    if it exists, and otherwise an exception is raised.
    """
    from cvxopt.amd import order
    n = X.size[0]
    Xt = chompack.tril(X)
    p = order(Xt)
    # Xc,N = chompack.embed(Xt,p)
    # L = chompack.completion(Xc)
    symb = chompack.symbolic(Xt, p)
    L = chompack.cspmatrix(symb) + Xt
    chompack.completion(L)
    Xt = matrix(0., (n, n))
    Xt[::n + 1] = 1.
    # chompack.solve(L, Xt, mode=0)
    # chompack.solve(L, Xt, mode=1)
    chompack.trsm(L, Xt)
    chompack.trsm(L, Xt, trans='T')
    return Xt
示例#7
0
def softmargin_completion(Q, d, gamma):
    """
    Solves the QP

        minimize    (1/2)*y'*Qc^{-1}*y + gamma*sum(v)
        subject to  diag(d)*(y + b*ones) + v >= 1
                    v >= 0

    (with variables y, b, v) and its dual, the 'soft-margin' SVM problem,

        maximize    -(1/2)*z'*Qc*z + d'*z
        subject to  0 <= diag(d)*z <= gamma*ones
                    sum(z) = 0

    (with variables z).

    Qc is the max determinant completion of Q.


    Input arguments.

        Q is a sparse N x N sparse matrix with chordal sparsity pattern
            and a positive definite completion

        d is an N-vector of labels -1 or 1.

        gamma is a positive parameter.

        F is the chompack pattern corresponding to Q.  If F is None, the
            pattern is computed.


    Output.

        z, y, b, v, optval, L, iters

    """

    if verbose: solvers.options['show_progress'] = True
    else: solvers.options['show_progress'] = False

    N = Q.size[0]
    p = chompack.maxcardsearch(Q)
    symb = chompack.symbolic(Q, p)
    Qc = chompack.cspmatrix(symb) + Q

    # Qinv is the inverse of the max. determinant p.d. completion of Q
    Lc = Qc.copy()
    chompack.completion(Lc)
    Qinv = Lc.copy()
    chompack.llt(Qinv)
    Qinv = Qinv.spmatrix(reordered=False)
    Qinv = chompack.symmetrize(Qinv)

    def P(u, v, alpha=1.0, beta=0.0):
        """
            v := alpha * [ Qc^-1, 0, 0;  0, 0, 0;  0, 0, 0 ] * u + beta * v
        """

        v *= beta
        base.symv(Qinv, u, v, alpha=alpha, beta=1.0)

    def G(u, v, alpha=1.0, beta=0.0, trans='N'):
        """
        If trans is 'N':

            v := alpha * [ -diag(d),  -d,  -I;  0,  0,  -I ] * u + beta * v.

        If trans is 'T':

            v := alpha * [ -diag(d), 0;  -d', 0;  -I, -I ] * u + beta * v.
        """

        v *= beta

        if trans is 'N':
            v[:N] -= alpha * (base.mul(d, u[:N] + u[N]) + u[-N:])
            v[-N:] -= alpha * u[-N:]

        else:
            v[:N] -= alpha * base.mul(d, u[:N])
            v[N] -= alpha * blas.dot(d, u, n=N)
            v[-N:] -= alpha * (u[:N] + u[N:])

    K = spmatrix(0.0, Qinv.I, Qinv.J)
    dy1, dy2 = matrix(0.0, (N, 1)), matrix(0.0, (N, 1))

    def Fkkt(W):
        """
        Custom KKT solver for

            [  Qinv  0   0  -D    0  ] [ ux_y ]   [ bx_y ]
            [  0     0   0  -d'   0  ] [ ux_b ]   [ bx_b ]
            [  0     0   0  -I   -I  ] [ ux_v ] = [ bx_v ]
            [ -D    -d  -I  -D1   0  ] [ uz_z ]   [ bz_z ]
            [  0     0  -I   0   -D2 ] [ uz_w ]   [ bz_w ]

        with D1 = diag(d1), D2 = diag(d2), d1 = W['d'][:N]**2,
        d2 = W['d'][N:])**2.
        """

        d1, d2 = W['d'][:N]**2, W['d'][N:]**2
        d3, d4 = (d1 + d2)**-1, (d1**-1 + d2**-1)**-1

        # Factor the chordal matrix K = Qinv + (D_1+D_2)^-1.
        K.V = Qinv.V
        K[::N + 1] = K[::N + 1] + d3
        L = chompack.cspmatrix(symb) + K
        chompack.cholesky(L)

        # Solve (Qinv + (D1+D2)^-1) * dy2 = (D1 + D2)^{-1} * 1
        blas.copy(d3, dy2)
        chompack.trsm(L, dy2, trans='N')
        chompack.trsm(L, dy2, trans='T')

        def g(x, y, z):

            # Solve
            #
            #     [ K    d3    ] [ ux_y ]
            #     [            ] [      ] =
            #     [ d3'  1'*d3 ] [ ux_b ]
            #
            #         [ bx_y ]   [ D  ]
            #         [      ] - [    ] * D3 * (D2 * bx_v + bx_z - bx_w).
            #         [ bx_b ]   [ d' ]

            x[:N] -= mul(d, mul(d3, mul(d2, x[-N:]) + z[:N] - z[-N:]))
            x[N] -= blas.dot(d, mul(d3, mul(d2, x[-N:]) + z[:N] - z[-N:]))

            # Solve dy1 := K^-1 * x[:N]
            blas.copy(x, dy1, n=N)
            chompack.trsm(L, dy1, trans='N')
            chompack.trsm(L, dy1, trans='T')

            # Find ux_y = dy1 - ux_b * dy2 s.t
            #
            #     d3' * ( dy1 - ux_b * dy2 + ux_b ) = x[N]
            #
            # i.e.  x[N] := ( x[N] - d3'* dy1 ) / ( d3'* ( 1 - dy2 ) ).

            x[N] = ( x[N] - blas.dot(d3, dy1) ) / \
                ( blas.asum(d3) - blas.dot(d3, dy2) )
            x[:N] = dy1 - x[N] * dy2

            # ux_v = D4 * ( bx_v -  D1^-1 (bz_z + D * (ux_y + ux_b))
            #     - D2^-1 * bz_w )

            x[-N:] = mul(
                d4, x[-N:] - div(z[:N] + mul(d, x[:N] + x[N]), d1) -
                div(z[N:], d2))

            # uz_z = - D1^-1 * ( bx_z - D * ( ux_y + ux_b ) - ux_v )
            # uz_w = - D2^-1 * ( bx_w - uz_w )
            z[:N] += base.mul(d, x[:N] + x[N]) + x[-N:]
            z[-N:] += x[-N:]
            blas.scal(-1.0, z)

            # Return W['di'] * uz
            blas.tbmv(W['di'], z, n=2 * N, k=0, ldA=1)

        return g

    q = matrix(0.0, (2 * N + 1, 1))

    if weights is 'proportional':
        dlist = list(d)
        C1 = 0.5 * N * gamma / dlist.count(1)
        C2 = 0.5 * N * gamma / dlist.count(-1)
        gvec = matrix([C1 if w == 1 else C2 for w in dlist], (N, 1))
        del dlist
        q[-N:] = gvec
    elif weights is 'equal':
        q[-N:] = gamma

    h = matrix(0.0, (2 * N, 1))
    h[:N] = -1.0
    sol = solvers.coneqp(P, q, G, h, kktsolver=Fkkt)
    u = matrix(0.0, (N, 1))
    y, b, v = sol['x'][:N], sol['x'][N], sol['x'][N + 1:]
    z = mul(d, sol['z'][:N])
    base.symv(Qinv, y, u)
    optval = 0.5 * blas.dot(y, u) + gamma * sum(v)
    return y, b, v, z, optval, Lc, sol['iterations']
示例#8
0
print("Computing Cholesky factorization..")
L = A.copy()         # make a copy of A
cholesky(L)          # compute Cholesky factorization; overwrites L

print("Computing Cholesky product..")
At = L.copy()        # make a copy of L
llt(At)              # compute Cholesky product; overwrites At

print("Computing projected inverse..")
Y = L.copy()         # make a copy of L
projected_inverse(Y) # compute projected inverse; overwrites Y

print("Computing completion..")
Lc = Y.copy()        # make a copy of Y
completion(Lc, factored_updates = False) # compute completion; overwrites Lc

print("Computing completion with factored updates..")
Lc2 = Y.copy()       # make a copy of Y
completion(Lc2, factored_updates = True) # compute completion (with factored updates); overwrites Lc2

print("Applying Hessian factors..")
U = At.copy()
fupd = False
hessian(L, Y, U, adj = False, inv = False, factored_updates = fupd)
hessian(L, Y, U, adj = True, inv = False, factored_updates = fupd)
hessian(L, Y, U, adj = True, inv = True, factored_updates = fupd)
hessian(L, Y, U, adj = False, inv = True, factored_updates = fupd)

print("\nEvaluating errors:\n")
# Compute norm of error: A - L*L.T
示例#9
0
文件: base.py 项目: cvxopt/smcp
    def solve_phase1(self,kktsolver='chol',MM = 1e5):
        """
        Solves primal Phase I problem using the feasible
        start solver.

        Returns primal feasible X.

        """
        from cvxopt import cholmod, amd
        k = 1e-3

        # compute Schur complement matrix
        Id = [i*(self.n+1) for i in range(self.n)]
        As = self._A[:,1:]
        As[Id,:] /= sqrt(2.0)

        M = spmatrix([],[],[],(self.m,self.m))
        base.syrk(As,M,trans='T')
        u = +self.b

        # compute least-norm solution
        F = cholmod.symbolic(M)
        cholmod.numeric(M,F)
        cholmod.solve(F,u)
        x = 0.5*self._A[:,1:]*u
        X0 = spmatrix(x[self.V[:].I],self.V.I,self.V.J,(self.n,self.n))

        # test feasibility
        p = amd.order(self.V)
        #Xc,Nf = chompack.embed(X0,p)
        #E = chompack.project(Xc,spmatrix(1.0,range(self.n),range(self.n)))
        symb = chompack.symbolic(self.V,p)
        Xc = chompack.cspmatrix(symb) + X0

        try:
            # L = chompack.completion(Xc)
            L = Xc.copy()
            chompack.completion(L)
            # least-norm solution is feasible
            return X0,None
        except:
            pass

        # create Phase I SDP object
        trA = matrix(0.0,(self.m+1,1))
        e = matrix(1.0,(self.n,1))
        Aa = self._A[Id,1:]
        base.gemv(Aa,e,trA,trans='T')
        trA[-1] = MM
        P1 = SDP()
        P1._A = misc.phase1_sdp(self._A,trA)
        P1._b = matrix([self.b-k*trA[:self.m],MM])
        P1._agg_sparsity()

        # find feasible starting point for Phase I problem
        tMIN = 0.0
        tMAX = 1.0
        while True:
            t = (tMIN+tMAX)/2.0
            #Xt = chompack.copy(Xc)
            #chompack.axpy(E,Xt,t)
            Xt = Xc.copy() + spmatrix(t,list(range(self.n)),list(range(self.n)))

            try:
                # L = chompack.completion(Xt)
                L = Xt.copy()
                chompack.completion(L)
                tMAX = t
                if tMAX - tMIN < 1e-1:
                    break
            except:
                tMAX *= 2.0
                tMIN = t

        tt = t + 1.0
        U = X0 + spmatrix(tt,list(range(self.n,)),list(range(self.n)))
        trU = sum(U[:][Id])

        Z0 = spdiag([U,spmatrix([tt+k,MM-trU],[0,1],[0,1],(2,2))])
        sol = P1.solve_feas(primalstart = {'x':Z0}, kktsolver = kktsolver)

        s = sol['x'][-2,-2] - k
        if s > 0:
            return None,P1
        else:

            sol.pop('y')
            sol.pop('s')
            X0 = sol.pop('x')[:self.n,:self.n]\
                - spmatrix(s,list(range(self.n)),list(range(self.n)))
            return X0,sol
示例#10
0
    def solve_phase1(self, kktsolver='chol', MM=1e5):
        """
        Solves primal Phase I problem using the feasible 
        start solver.

        Returns primal feasible X.

        """
        from cvxopt import cholmod, amd
        k = 1e-3

        # compute Schur complement matrix
        Id = [i * (self.n + 1) for i in range(self.n)]
        As = self._A[:, 1:]
        As[Id, :] /= sqrt(2.0)

        M = spmatrix([], [], [], (self.m, self.m))
        base.syrk(As, M, trans='T')
        u = +self.b

        # compute least-norm solution
        F = cholmod.symbolic(M)
        cholmod.numeric(M, F)
        cholmod.solve(F, u)
        x = 0.5 * self._A[:, 1:] * u
        X0 = spmatrix(x[self.V[:].I], self.V.I, self.V.J, (self.n, self.n))

        # test feasibility
        p = amd.order(self.V)
        #Xc,Nf = chompack.embed(X0,p)
        #E = chompack.project(Xc,spmatrix(1.0,range(self.n),range(self.n)))
        symb = chompack.symbolic(self.V, p)
        Xc = chompack.cspmatrix(symb) + X0

        try:
            # L = chompack.completion(Xc)
            L = Xc.copy()
            chompack.completion(L)
            # least-norm solution is feasible
            return X0
        except:
            pass

        # create Phase I SDP object
        trA = matrix(0.0, (self.m + 1, 1))
        e = matrix(1.0, (self.n, 1))
        Aa = self._A[Id, 1:]
        base.gemv(Aa, e, trA, trans='T')
        trA[-1] = MM
        P1 = SDP()
        P1._A = misc.phase1_sdp(self._A, trA)
        P1._b = matrix([self.b - k * trA[:self.m], MM])
        P1._agg_sparsity()

        # find feasible starting point for Phase I problem
        tMIN = 0.0
        tMAX = 1.0
        while True:
            t = (tMIN + tMAX) / 2.0
            #Xt = chompack.copy(Xc)
            #chompack.axpy(E,Xt,t)
            Xt = Xc.copy() + spmatrix(t, range(self.n), range(self.n))

            try:
                # L = chompack.completion(Xt)
                L = Xt.copy()
                chompack.completion(L)
                tMAX = t
                if tMAX - tMIN < 1e-1:
                    break
            except:
                tMAX *= 2.0
                tMIN = t

        tt = t + 1.0
        U = X0 + spmatrix(tt, range(self.n, ), range(self.n))
        trU = sum(U[:][Id])

        Z0 = spdiag([U, spmatrix([tt + k, MM - trU], [0, 1], [0, 1], (2, 2))])
        sol = P1.solve_feas(primalstart={'x': Z0}, kktsolver=kktsolver)

        s = sol['x'][-2, -2] - k
        if s > 0:
            return None, P1
        else:

            sol.pop('y')
            sol.pop('s')
            X0 = sol.pop('x')[:self.n,:self.n]\
                - spmatrix(s,range(self.n),range(self.n))
            return X0, sol