示例#1
0
def run(path0, silent=False, verbose=True):
    '''
    Main function to run for a given path containing the raw GNIRS data

    Parameters
    ----------
    path0 : str
     Path to raw FITS file. Must include '/' at the end

    silent : boolean
      Turns off stdout messages. Default: False

    verbose : boolean
      Turns on additional stdout messages. Default: True

    Returns
    -------

    Notes
    -----
    Created by Chun Ly, 22 March 2017
    Modified by Chun Ly, 23 March 2017
     - Call dir_check.main() to handle multiple date directories
    Modified by Chun Ly, 8 January 2018
     - Import glog and call for stdout and ASCII logging
     - Pass mylogger to get_files()
    Modified by Chun Ly, 7 May 2018
     - Bug fix: Call check_path() to add '/' in path0
    '''

    rawdir = check_path(path0) # + on 07/05/2018

    # + on 08/01/2018
    logfile  = path0+'symlink.log'
    mylogger = glog.log0(logfile)._get_logger()

    if silent == False: mylogger.info('### Begin run : '+systime())

    # + on 23/03/2017
    dir_list, list_path = dir_check.main(path0, mylogger=mylogger,
                                         silent=silent, verbose=verbose)

    # Mod on 23/03/2017
    for path in list_path:
        files, n_files = get_files(path, mylogger=mylogger, silent=silent,
                                   verbose=verbose)

        for nn in xrange(n_files):
            c_file = path+'c'+files[nn]
            if exists(c_file):
                mylogger.warn('File exists : '+c_file)
            else:
                cmd0 = 'ln -fs '+files[nn]+' '+c_file
                if silent == False:
                    mylogger.info(cmd0)
                os.system(cmd0)
        #endfor
    #endfor

    if silent == False: mylogger.info('### End run : '+systime())
示例#2
0
def main(path0, silent=True, verbose=False):

    '''
    Main function for checking paths and adding '/'

    Parameters
    ----------
    path0 : str
      Full path.

    silent : boolean
      Turns off stdout messages. Default: False

    verbose : boolean
      Turns on additional stdout messages. Default: True

    Returns
    -------

    Notes
    -----
    Created by Chun Ly, 20 September 2017
    '''
    
    if silent == False: log.info('### Begin main : '+systime())

    if path0[-1] != '/': path0 = path0 + '/'

    if silent == False: log.info('### End main : '+systime())
    return path0
示例#3
0
文件: bino.py 项目: astrochun/MZEnv
def in_bino_field(tab0, verts0, silent=False, verbose=True):
    '''
    Determine sources in MMT/Binospec field

    Parameters
    ----------
    tab0 : astropy.table.table.Table
      Astropy Table of HSC-SSP NB excess emitter catalog.

    verts0 : list
      List of matplotlib.patches.Rectangle vertices

    silent : boolean
      Turns off stdout messages. Default: False

    verbose : boolean
      Turns on additional stdout messages. Default: True

    Returns
    -------
    in_fields0 : list
      List of numpy arrays

    Notes
    -----
    Created by Chun Ly, 22 March 2018
    '''

    if silent == False: log.info('### Begin in_bino_field : ' + systime())

    ra = tab0['ra'].data
    dec = tab0['dec'].data
    coords = np.array([ra, dec]).transpose()

    n_ptgs = len(verts0)

    in_field0 = []
    for cc in range(n_ptgs):
        # Side 1
        t_path1 = Path0(verts0[cc][0])
        cp_res1 = t_path1.contains_points(coords)
        in_field1 = np.array(
            [xx for xx in range(len(tab0)) if cp_res1[xx] == True])

        # Side 2
        t_path2 = Path0(verts0[cc][1])
        cp_res2 = t_path2.contains_points(coords)
        in_field2 = np.array(
            [xx for xx in range(len(tab0)) if cp_res2[xx] == True])

        print cc, len(in_field1), len(in_field2)
        in_field = np.append(in_field1, in_field2)
        in_field.sort()
        in_field0.append(in_field)
    #endfor

    if silent == False: log.info('### End in_bino_field : ' + systime())
    return in_field0
def main(path, final_prefix, outfile='', all_lis=[], all_file='', 
         mylogger=None, silent=False, verbose=True):

    '''
    Check if files exist. If not, create a temporary ASCII file to execute
    IRAF commands for the subset of files that do not exists

    Parameters
    ----------

    silent : boolean
      Turns off stdout messages. Default: False

    verbose : boolean
      Turns on additional stdout messages. Default: True

    Returns
    -------

    Notes
    -----
    Created by Chun Ly, 26 April 2017
    Modified by Chun Ly, 10 January 2018
     - Implement glog logging, allow mylogger keyword input
    '''

    # + on 10/01/2018
    if type(mylogger) == type(None):
        mylog, clog = 0, log
    else:
        mylog, clog = 1, mylogger

    if silent == False: clog.info('### Begin main : '+systime())

    if len(all_lis) == 0 and all_file == '':
        clog.warn('Must specify all_lis or all_file')
        clog.warn('Aborting!!!')
        return
    #endif

    if len(all_lis) == 0:
        all_lis = np.loadtxt(path+'all.lis', dtype=type(str))

    no_files = [file0 for file0 in all_lis if
                exists(path+final_prefix+file0) == False]
    
    if len(no_files) > 0:
        if outfile != '':
            if silent == False: clog.info('Writing : '+path+outfile)
            np.savetxt(path+outfile, no_files, fmt='%s')
        else:
            pref_name = [final_prefix+file0 for file0 in no_files]
            print pref_name

    if silent == False: clog.info('### End main : '+systime())
示例#5
0
def get_files(path0, mylogger=None, silent=False, verbose=True):
    '''
    Simple function to get names of raw files

    Parameters
    ----------
    path0 : str
     Path to raw FITS file. Must include '/' at the end

    silent : boolean
      Turns off stdout messages. Default: False

    verbose : boolean
      Turns on additional stdout messages. Default: True

    Returns
    -------
    files : list
      List containing the filename for FITS raw files

    n_files : int
      Size of [files]

    Notes
    -----
    Created by Chun Ly, 22 March 2017
    Modified by Chun Ly, 5 June 2017
     - Fix minor bug: infile -> infile0
    Modified by Chun Ly, 8 January 2018
     - Import glog and call for stdout and ASCII logging
    Modified by Chun Ly, 20 April 2018
     - Bug fix: mylog -> clog
    '''

    if type(mylogger) == type(None):
        mylog, clog = 0, log
    else:
        mylog, clog = 1, mylogger

    if silent == False: clog.info('### Begin get_files : '+systime())

    infile0 = path0+'all.lis'
    if not exists(infile0):
        clog.warn('File does not exists!!! : '+infile0)
        clog.warn('EXITING!!!')
        return

    if silent == False:
        clog.info('Reading : '+infile0)
    files   = np.loadtxt(infile0, dtype=type(str)).tolist()
    n_files = len(files)

    if silent == False: clog.info('### End get_files : '+systime())

    return files, n_files
示例#6
0
def main(sub_dict0, fld_idx, fld_tab, Inst, tab_outfile, silent=False,
         verbose=True):
    '''
    Provide explanation for function here.

    Parameters
    ----------

    silent : boolean
      Turns off stdout messages. Default: False

    verbose : boolean
      Turns on additional stdout messages. Default: True

    Returns
    -------

    Notes
    -----
    Created by Chun Ly, 21 March 2018
     - Bug fix: with removing PA column in table
    '''
    
    if silent == False: log.info('### Begin main : '+systime())

    for key in sub_dict0.keys():
        s_idx = sub_dict0[key]
        
        cmd1 = 'n_fld_%s = np.zeros(len(fld_idx), dtype=np.int)' % key
        exec(cmd1)
        for ff,in_field in enumerate(fld_idx):
            in_idx = list(set(in_field.tolist()) & set(s_idx))
            cmd2 = 'n_fld_%s[ff] = len(in_idx)' % key
            exec(cmd2)
        #endfor
    #endfor
    t_cols = ['n_fld_'+ aa for aa in sub_dict0.keys()]

    fld_arr0 = [fld_tab['MaskName'].data, fld_tab['RA'].data,
                fld_tab['Dec'].data, fld_tab['PA'].data]
    names0 = ['MaskName', 'RA', 'Dec', 'PA']

    cmd3 = "fld_arr0 += ["+', '.join(t_cols)+']'
    exec(cmd3)
    names0 += [val.replace('NB0','NB') for val in sub_dict0.keys()]
    inptg_tab0 = Table(fld_arr0, names=names0)

    if Inst == 'Hecto': del inptg_tab0['PA']
    
    if silent == False: inptg_tab0.pprint(max_lines=-1)
    if silent == False: log.info('### Writing : '+tab_outfile)
    inptg_tab0.write(tab_outfile, format='ascii.latex')

    if silent == False: log.info('### End main : '+systime())
示例#7
0
def in_deimos_field(tab0, verts0, silent=False, verbose=True):
    '''
    Determine sources in Keck/DEIMOS field

    Parameters
    ----------
    tab0 : astropy.table.table.Table
      Astropy Table of HSC-SSP NB excess emitter catalog.

    verts0 : list
      List of matplotlib.patches.Rectangle vertices

    silent : boolean
      Turns off stdout messages. Default: False

    verbose : boolean
      Turns on additional stdout messages. Default: True

    Returns
    -------
    in_fields0 : list
      List of numpy arrays

    Notes
    -----
    Created by Chun Ly, 3 March 2018

    Modified by Chun Ly, 4 March 2018
     - Bug fix: Incorrect variable name, patches -> verts0
    '''

    if silent == False: log.info('### Begin in_deimos_field : ' + systime())

    ra = tab0['ra'].data
    dec = tab0['dec'].data
    coords = np.array([ra, dec]).transpose()

    n_ptgs = len(verts0)

    in_field0 = []
    for cc in range(n_ptgs):
        t_path = Path0(verts0[cc])

        cp_res = t_path.contains_points(coords)
        in_field = np.array(
            [xx for xx in range(len(tab0)) if cp_res[xx] == True])
        print cc, len(in_field)
        in_field0.append(in_field)
    #endfor

    if silent == False: log.info('### End in_deimos_field : ' + systime())
    return in_field0
示例#8
0
def cp_files(outdir,
             path,
             final_prefix,
             input_lis,
             silent=False,
             verbose=True):
    '''
    Copy files into outdir for certain IRAF functions

    Parameters
    ----------
    outdir : str
      Full path for where files are temporarily stored.
      Must include '/' at the end

    path : str
      Full path to list. Must include '/' at the end

    final_prefix : str
      Files with specific prefix to search for ('rnc', etc).
      This will be added before the filenames in [input_lis]

    input_lis : str
      Filename for input list to check ('arc.lis', 'flat.lis', etc.)
      Full path need to be provided here.

    silent : boolean
      Turns off stdout messages. Default: False

    verbose : boolean
      Turns on additional stdout messages. Default: True

    Returns
    -------

    Notes
    -----
    Created by Chun Ly, 7 May 2017
    '''

    if silent == False: log.info('### Begin cp_files : ' + systime())

    if silent == False: log.info('### Reading : ' + input_lis)
    files = np.loadtxt(input_lis, dtype=type(str))

    files0 = [path + final_prefix + file0 for file0 in files]

    cmd0 = 'cp -a ' + ' '.join(files0) + ' ' + outdir
    if silent == False: log.info('### ' + cmd0)
    os.system(cmd0)

    if silent == False: log.info('### End cp_files : ' + systime())
示例#9
0
def run_all(files=None, path0=None, user='******', passwd='',
            silent=False, verbose=True):
    '''
    Run all functions related to MMTCam analysis

    Parameters
    ----------
    files : list
      List of files

    path0 : string
      Path to files. If not provided it is assumed that [files] has the full
      path name

    silent : boolean
      Turns off stdout messages. Default: False

    verbose : boolean
      Turns on additional stdout messages. Default: True

    Returns
    -------

    Notes
    -----
    Created by Chun Ly, 23 February 2017
    Modified by Chun Ly, 28 February 2017
     - Add user and passwd keyword to pass on to make_postage()
    '''

    if files == None and path0 == None:
        log.error('files and path0 keywords not provided')
        log.error('Exiting!!!')
        return

    if silent == False: log.info('### Begin run_all: '+systime())

    if files == None and path0 != None:
        files, seqno = get_files(path0)
        # path0 = None # Reset since files will have full path

    if silent == False:
        log.info('The following files will be analyzed from : ')
        log.info(path0)
        for file in files: log.info(os.path.basename(file))

    find_stars(files=files, path0=path0, plot=True, verbose=False)
    make_postage(files=files, path0=path0, user=user, passwd=passwd,
                 verbose=False)
    psf_contours(files=files, path0=path0, verbose=False)

    if silent == False: log.info('### End run_all: '+systime())
示例#10
0
文件: hecto.py 项目: astrochun/MZEnv
def in_hecto_field(tab0, fld_coord, silent=False, verbose=True):
    '''
    Determine sources in MMT/Hectospec field

    Parameters
    ----------
    tab0 : astropy.table.table.Table
      Astropy Table of HSC-SSP NB excess emitter catalog.

    fld_coord : list
      List of RA,Dec coordinate set

    silent : boolean
      Turns off stdout messages. Default: False

    verbose : boolean
      Turns on additional stdout messages. Default: True

    Returns
    -------
    in_fields0 : list
      List of numpy arrays

    Notes
    -----
    Created by Chun Ly, 16 March 2018
    '''

    if silent == False: log.info('### Begin in_hecto_field : '+systime())

    ra  = tab0['ra'].data
    dec = tab0['dec'].data

    n_ptgs = len(fld_coord)

    in_field0 = []
    for cc in range(n_ptgs):
        ra_diff0  = ra  - fld_coord[cc][0]
        dec_diff0 = dec - fld_coord[cc][1]
        diff0 = np.sqrt(ra_diff0**2 + dec_diff0**2)
        in_field = np.array([xx for xx in range(len(tab0)) if
                             diff0[xx] <= 0.50])
        print cc, len(in_field)
        in_field0.append(in_field)
    #endfor

    if silent == False: log.info('### End in_hecto_field : '+systime())
    return in_field0
示例#11
0
def delete(path0, silent=False, verbose=True):
    '''
    Remove all symbolic links in given path containing the raw GNIRS data

    Parameters
    ----------
    path0 : str
     Path to raw FITS file. Must include '/' at the end

    silent : boolean
      Turns off stdout messages. Default: False

    verbose : boolean
      Turns on additional stdout messages. Default: True

    Returns
    -------

    Notes
    -----
    Created by Chun Ly, 22 March 2017
    Modified by Chun Ly, 8 January 2018
     - Import glog and call for stdout and ASCII logging
     - Pass mylogger to get_files()
    Modified by Chun Ly, 22 January 2018
     - Pass rm command strings to mylogger
    '''

    # + on 08/01/2018
    logfile  = path0+'symlink.log'
    mylogger = glog.log0(logfile)._get_logger()

    if silent == False: mylogger.info('### Begin delete : '+systime())

    files, n_files = get_files(path0, mylogger=mylogger, silent=silent,
                               verbose=verbose)

    for nn in xrange(n_files):
        c_file = path0+'c'+files[nn]
        if exists(c_file):
            if os.path.islink(c_file) == True:
                cmd0 = 'rm '+c_file
                mylogger.info(cmd0)
                os.system(cmd0)
            else:
                mylogger.info('File is from cleanir: '+c_file)

    if silent == False: mylogger.info('### End delete : '+systime())
示例#12
0
def main(field='', dr='pdr1', silent=False, verbose=True):
    '''
    Main function to read in HSC SSP catalogs of NB excess emitters

    Parameters
    ----------
    field : str
      Name of field to read in. Either 'udeep' or 'deep'

    dr : str
      Data release name. Default: 'pdr1'

    silent : boolean
      Turns off stdout messages. Default: False

    verbose : boolean
      Turns on additional stdout messages. Default: True

    Returns
    -------

    Notes
    -----
    Created by Chun Ly, 27 February 2018

    Modified by Chun Ly, 2 March 2018
     - Call paths module to get path
    '''

    if silent == False: log.info('### Begin main : ' + systime())

    if field == '':
        log.warn("### [field] input not specified!!!")
        log.warn("### Either 'udeep' or 'deep'")
        log.warn('### Exiting!!!')
        return

    dir0 = paths.gdrive()  # Mod on 02/03/2018

    infile = dir0 + 'catalogs/%s_%s_nb_forced_coord_phot.csv.gz' % (dr, field)
    if silent == False: log.info('### Reading : ' + infile)
    tab0 = asc.read(infile, format='csv')

    if silent == False: log.info('### End main : ' + systime())

    return tab0
示例#13
0
def main(silent=False, verbose=True):
    '''
    Provide explanation for function here.

    Parameters
    ----------

    silent : boolean
      Turns off stdout messages. Default: False

    verbose : boolean
      Turns on additional stdout messages. Default: True

    Returns
    -------

    Notes
    -----
    Created by Chun Ly, 13 July 2018
    '''

    if silent == False: log.info('### Begin main : ' + systime())

    path0 = '/Users/cly/Google Drive/NASA_Summer2015/Filters/'

    filters = ['NB704', 'NB711', 'NB816', 'NB921', 'NB973']
    files = [path0 + filt + 'response.dat' for filt in filters]

    filt_corr = np.zeros(len(files))
    for ff in range(len(files)):
        log.info('Reading : ' + files[ff])
        tab1 = asc.read(files[ff], format='no_header')
        y_val = tab1['col2']
        y_val /= max(y_val)

        good = np.where(y_val >= 0.05)[0]

        # Compute statistical correction by Sum [filter_amp * filter_amp] / Sum [filter_amp]
        weight_sum = np.sum(y_val[good]**2) / np.sum(y_val[good])
        filt_corr[ff] = 1 / weight_sum

    filt_tab = Table([filters, filt_corr], names=('Filter', 'Filt_Stat_Corr'))
    filt_tab.pprint()

    if silent == False: log.info('### End main : ' + systime())
示例#14
0
def get_k_values(wave, law='CCM89', silent=True, verbose=False):
    '''
    Function to get k(lambda):
     A(lambda) = k(lambda) * E(B-V)

    Parameters
    ----------
    wave : float or array like
      Wavelength in units of Angstroms

    law : string
      String for dust attenuation "law". Default: "CCM89".
      Full list available from RC.getLaws()
      Options are:
       'G03 LMC',  'K76', 'F99-like', 'F88 F99 LMC', 'No correction',
       'SM79 Gal', 'MCC99 FM90 LMC', 'CCM89 Bal07', 'CCM89 oD94',
       'S79 H83 CCM89', 'F99', 'CCM89'
       - See pn.RedCorr.printLaws() for more details

    silent : boolean
      Turns off stdout messages. Default: True

    verbose : boolean
      Turns on additional stdout messages. Default: False
	  
    Returns
    -------
    k value at wave

    Notes
    -----
    Created by Chun Ly, 22 November 2016
    '''

    if silent == False:
        print '### Begin balmer_decrement.get_k_values() | '+systime()

    RC = pn.RedCorr(E_BV = 1.0)
    RC.law = law

    if silent == False:
        print '### End balmer_decrement.get_k_values() | '+systime()

    return np.log10(RC.getCorr(wave)) / 0.4
示例#15
0
def rm_files(final_prefix, input_lis, silent=False, verbose=True):
    '''
    Delete files in the current directory

    Parameters
    ----------
    final_prefix : str
      Files with specific prefix to search for ('rnc', etc).
      This will be added before the filenames in [input_lis]

    input_lis : str
      Filename for input list to check ('arc.lis', 'flat.lis', etc.)

    silent : boolean
      Turns off stdout messages. Default: False

    verbose : boolean
      Turns on additional stdout messages. Default: True

    Returns
    -------

    Notes
    -----
    Created by Chun Ly, 7 May 2017
    Modified by Chun Ly, 15 May 2017
     - Got rid of [path] array
    '''

    if silent == False: log.info('### Begin rm_files : ' + systime())

    if silent == False: log.info('### Reading : ' + input_lis)
    files = np.loadtxt(input_lis, dtype=type(str))

    files0 = [final_prefix + file0 for file0 in files]

    cmd0 = 'rm ' + ' '.join(files0)
    if silent == False: log.info('### ' + cmd0)
    os.system(cmd0)

    if silent == False: log.info('### End rm_files : ' + systime())
示例#16
0
def main(path0, out_pdf='', silent=False, verbose=True, overwrite=False):
    '''
    Main function to generate PDF illustrating alignment on target

    Parameters
    ----------
    path0 : str
     Path to FITS file. Must include '/' at the end

    silent : boolean
      Turns off stdout messages. Default: False

    verbose : boolean
      Turns on additional stdout messages. Default: True

    overwrite : boolean
      Overwrite files if they exists. Default: False

    Returns
    -------

    Notes
    -----
    Created by Chun Ly, 24 March 2017
    Modified by Chun Ly, 01 April 2017
     - Handle CRs and bad pixels using cosmicrays_lacosmic
    Modified by Chun Ly, 04 April 2017
     - Use find_gnirs_window_mean to find center
    Modified by Chun Ly, 04-05 April 2017
     - Adjust greyscale limits to handle slit image (make it black),
       and faint sources
     Use find_gnirs_window_mean to find center
    Modified by Chun Ly, 05 April 2017
     - Handle alignment sequences with more than just 4 frames
     - Handle excess subplots for individual PDF pages (remove axes)
     - Compute seeing FWHM for acquisition images
    Modified by Chun Ly, 06 April 2017
     - Get coordinates for slit in cutout
    Modified by Chun Ly, 11 May 2017
     - Use slit image to find center when telluric data is only available
    Modified by Chun Ly, 3 July 2017
     - Add overwrite option to prevent overwriting file
    Modified by Chun Ly, 9 January 2018
     - Import glog and call for stdout and ASCII logging
     - Pass mylogger to find_gnirs_window_mean(), find_gnirs_window()
    Modified by Chun Ly, 20 April 2018
     - Pass mylogger to gauss2d_fit()
     - Switch print statements to mylogger calls
    Modified by Chun Ly, 22 April 2018
     - Bug fix: mylogger calls mistakes
     - Bug fix: mylogger calls mistakes (cont'd)
    '''

    # + on 09/01/2018
    logfile = path0 + 'align_check.log'
    mylogger = glog.log0(logfile)._get_logger()

    if silent == False: mylogger.info('### Begin main : ' + systime())

    dir_list, list_path = dir_check.main(path0,
                                         mylogger=mylogger,
                                         silent=silent,
                                         verbose=verbose)

    out_pdf_default = out_pdf
    for path in list_path:
        infile = path + 'hdr_info.QA.tbl'
        if not exists(infile):
            mylogger.warning('File does not exist : ' + infile)
            mylogger.warning('Exiting!!! ' + systime())
            return

        out_pdf = path + 'align_check.pdf' if out_pdf == '' else path + out_pdf

        # Mod on 03/07/2017
        if overwrite == False and exists(out_pdf):
            mylogger.warn('File exists!! Will not overwrite ' + out_pdf)
        else:
            pp = PdfPages(out_pdf)

            if silent == False: mylogger.info('Reading: ' + infile)
            tab0 = asc.read(infile, format='fixed_width_two_line')

            align = [ii for ii in xrange(len(tab0)) if tab0['QA'][ii] == 'N/A']
            if silent == False:
                mylogger.info('Number of alignment images found : ' +
                              str(len(align)))

            ID = tab0['object'][align]
            ID0 = list(set(ID))  #Unique ID's
            if silent == False:
                mylogger.info('Sources found : ' + ', '.join(ID0))

            # + on 04/04/2017
            win_ref_idx = [
                tt for tt in xrange(len(tab0))
                if (tab0['QA'][tt] == 'N/A') and ('Acq' in tab0['slit'][tt])
                and ('HIP' not in tab0['object'][tt]) and (
                    'HD' not in tab0['object'][tt])
            ]

            # Mod on 11/05/2017
            if len(win_ref_idx) > 0:
                win_ref_file = path + tab0['filename'][win_ref_idx[0]]
                mylogger.info('Reference image for finding GNIRS window : ' +
                              win_ref_file)

                x_min, x_max, y_min, y_max, x_cen, \
                    y_cen = find_gnirs_window_mean(win_ref_file, mylogger=mylogger)
            else:
                mylogger.info('Using telluric image as reference')
                win_ref_file = path + tab0['filename'][0]
                slit_x0, slit_y0_lo, slit_y0_hi = get_slit_trace(win_ref_file)
                x_min, x_max = min(slit_x0), max(slit_x0)
                x_cen = (x_min + x_max) / 2.0
                y_cen = (np.median(slit_y0_lo) + np.median(slit_y0_hi)) / 2.0
                y_min, y_max = y_cen - size2d[0].value / 2.0, y_cen + size2d[
                    0].value / 2.0

            pos_cen = (x_cen, y_cen)
            new_size = u.Quantity((y_max - y_min, x_max - x_min), u.pixel)

            # + on 20/04/2018, Mod on 22/04/2018
            mylogger.info('pos_cen : (%f, %f) ' % (pos_cen[0], pos_cen[1]))
            mylogger.info('new_size : [%f, %f] pix ' %
                          (new_size[0].value, new_size[1].value))

            for ii in xrange(len(ID0)):
                t_idx = [
                    tt for tt in xrange(len(tab0)) if
                    (tab0['object'][tt] == ID0[ii] and tab0['QA'][tt] == 'N/A')
                ]

                t_files = [path + a for a in tab0['filename'][t_idx]]
                ncols = 2.0
                nrows = 2  # np.ceil(len(t_idx)/ncols)
                ncols, nrows = np.int(ncols), np.int(nrows)

                # Mod on 05/04/2017
                if len(t_idx) <= nrows * ncols:
                    fig, ax_arr = plt.subplots(nrows=nrows, ncols=ncols)

                #med0, x_min, x_max, y_min, \
                #    y_max, x_cen, y_cen = find_gnirs_window(t_files[1], mylogger=mylogger)

                # Later + on 24/03/2017 | Mod on 04/04/2017
                xcen, ycen = find_star(t_files[-1],
                                       pos=pos_cen,
                                       find_size2d=new_size)
                # Fix to get relative coordinate for Cutout2D image
                #xcen -= pos_cen[0]-new_size[1].value/2.0
                #ycen -= pos_cen[1]-new_size[0].value/2.0

                slit_x0, slit_y0_lo, slit_y0_hi = get_slit_trace(
                    t_files[0])  #, x_min, x_max)
                # Adjust values for offset that is applied
                # Bug: Mod on 04/04/2017 to get proper coordinate
                slit_x0 -= np.int64(pos_cen[0] - size2d[1].value / 2.0)
                slit_y0_lo -= pos_cen[1] - size2d[0].value / 2.0
                slit_y0_hi -= pos_cen[1] - size2d[0].value / 2.0

                for jj in xrange(len(t_idx)):
                    jj_idx = t_idx[jj]

                    # + on 05/04/2017
                    if len(t_idx) > (nrows * ncols):
                        if jj % (nrows * ncols) == 0:
                            fig, ax_arr = plt.subplots(nrows=nrows,
                                                       ncols=ncols)

                    im0 = fits.getdata(t_files[jj])
                    hdr0 = fits.getheader(t_files[jj], ext=0)  # Get WCS header

                    # + 01/04/2017
                    im0_clean = cosmicray_lacosmic(im0, sigclip=10)[0]

                    cutout = Cutout2D(im0_clean,
                                      pos_cen,
                                      size2d,
                                      mode='partial',
                                      fill_value=np.nan)

                    t_col, t_row = jj % ncols, (jj / ncols) % nrows

                    # Mod on 04/04/2017 to handle bright and faint stars
                    max0 = np.max(cutout.data)

                    # Compute median within GNIRS window
                    # + on 04-05/04/2017
                    temp = im0_clean[-50:-1, :]
                    bgd0, sig0 = np.median(temp), np.std(temp)
                    idx_y, idx_x = np.where(im0_clean > (bgd0 + 5 * sig0))
                    med0 = np.median(im0_clean[idx_y, idx_x])
                    mylogger.info('## max0 : %f   med0 : %f ' % (max0, med0))
                    if max0 > 50000:
                        z1, z2 = zscale.get_limits(cutout.data)
                        z2 = max0  # Change for better stretch for telluric star
                    else:
                        if ('Acq_' not in tab0['slit'][jj_idx]) and \
                           (tab0['exptime'][jj_idx] == 3):
                            # First frame that will show the longslit
                            z1, z2 = 0.0, 0.5 * max0
                        else:
                            # This should handle faint and bright stars
                            z1, z2 = 0.5 * med0, max0

                    norm = ImageNormalize(vmin=z1, vmax=z2)
                    t_ax = ax_arr[t_row, t_col]
                    t_ax.imshow(cutout.data,
                                cmap='Greys',
                                origin='lower',
                                norm=norm)
                    #aplpy.FITSFigure(cutout)

                    # Draw trace of slit
                    t_ax.plot(slit_x0, slit_y0_lo, 'r-')
                    t_ax.plot(slit_x0, slit_y0_hi, 'r-')

                    t_ax.xaxis.set_ticklabels([])
                    t_ax.yaxis.set_ticklabels([])

                    fig.suptitle(path, fontsize=14)

                    txt0 = tab0['filename'][jj_idx] + '\n'
                    txt0 += tab0['datelabel'][jj_idx] + '\n'
                    txt0 += tab0['UT_date'][jj_idx] + '\n'
                    txt0 += tab0['object'][jj_idx]
                    t_ax.annotate(txt0, [0.025, 0.95],
                                  xycoords='axes fraction',
                                  ha='left',
                                  va='top')

                    # Plot inset | Later + on 24/03/2017
                    axins = zoomed_inset_axes(t_ax, 6, loc=4)
                    norm2 = ImageNormalize(vmin=z1, vmax=z2)
                    axins.imshow(cutout.data,
                                 cmap='Greys',
                                 origin='lower',
                                 norm=norm2)

                    # Draw trace of slit
                    axins.plot(slit_x0, slit_y0_lo, 'r-')
                    axins.plot(slit_x0, slit_y0_hi, 'r-')

                    # Mod on 04/04/2017 to get Cutout2d coordinates
                    c_xcen = xcen - (pos_cen[0] - size2d[1].value / 2.0)
                    c_ycen = ycen - (pos_cen[1] - size2d[0].value / 2.0)
                    x1, x2, y1, y2 = c_xcen - 20, c_xcen + 20, c_ycen - 20, c_ycen + 20
                    axins.set_xlim([x1, x2])
                    axins.set_ylim([y1, y2])
                    axins.xaxis.set_ticklabels([])
                    axins.yaxis.set_ticklabels([])
                    mark_inset(t_ax,
                               axins,
                               loc1=1,
                               loc2=3,
                               fc="none",
                               ec="b",
                               ls='dotted',
                               lw=0.5)

                    # Compute FWHM of alignment star | + on 05/04/2017
                    if ('Acq_' not in tab0['slit'][jj_idx]) and \
                       (tab0['exptime'][jj_idx] == 3):
                        mylogger.info('No source in slit : ' +
                                      tab0['filename'][jj_idx])
                    else:
                        # + on 06/04/2017
                        c_size2d = u.Quantity((40, 40), u.pixel)
                        c_slit_x0 = slit_x0 - (c_xcen -
                                               c_size2d[1].value / 2.0)
                        c_slit_y0_lo = slit_y0_lo - (c_ycen -
                                                     c_size2d[0].value / 2.0)
                        c_slit_y0_hi = slit_y0_hi - (c_ycen -
                                                     c_size2d[0].value / 2.0)
                        im0_crop = Cutout2D(cutout.data, (c_xcen, c_ycen),
                                            c_size2d,
                                            mode='partial',
                                            fill_value=np.nan)
                        gauss2d_fit(im0_crop.data,
                                    hdr0,
                                    t_ax,
                                    c_slit_x0,
                                    c_slit_y0_lo,
                                    c_slit_y0_hi,
                                    mylogger=mylogger)  # Mod on 06/04/2017

                    # Write each page separately | + on 05/04/2017
                    if len(t_idx) > (nrows * ncols):
                        # Mod later on 05/04/2017 to handle excess subplots
                        if jj == len(t_idx) - 1:
                            rem0 = len(t_idx) % (nrows * ncols)  # remainder
                            if rem0 != 0:
                                for rr in range(rem0, nrows * ncols, 1):
                                    t_col, t_row = rr % ncols, (rr /
                                                                ncols) % nrows
                                    ax_arr[t_row, t_col].axis('off')

                        if (jj % (nrows * ncols) == nrows*ncols-1) or \
                           (jj == len(t_idx)-1):
                            subplots_adjust(left=0.02,
                                            bottom=0.02,
                                            top=0.95,
                                            right=0.98,
                                            wspace=0.02,
                                            hspace=0.02)
                            fig.set_size_inches(11, 8)
                            fig.savefig(pp, format='pdf')
                #endfor

                # Mod on 05/04/2017
                if len(t_idx) <= nrows * ncols:
                    # Mod later on 05/04/2017 to handle excess subplots
                    for rr in range(len(t_idx), nrows * ncols):
                        t_col, t_row = rr % ncols, (rr / ncols) % nrows
                        ax_arr[t_row, t_col].axis('off')

                    subplots_adjust(left=0.02,
                                    bottom=0.02,
                                    top=0.95,
                                    right=0.98,
                                    wspace=0.02,
                                    hspace=0.02)
                    fig.set_size_inches(11, 8)
                    fig.savefig(pp, format='pdf')
            #endfor

            pp.close()
        #endelse

        out_pdf = out_pdf_default

    if silent == False: mylogger.info('### End main : ' + systime())
示例#17
0
def main(path0='',
         out_pdf='',
         check_quality=True,
         skysub=False,
         silent=False,
         verbose=True,
         overwrite=False):
    '''
    main() function to compute natural seeing (image quality) from bright
    alignment star

    Parameters
    ----------
    path0 : str
      Full path to where output PDF and FITS file are located. Must end
      with a '/'

    out_pdf : str
      Filename for output PDF. Do NOT include full path

    check_quality : boolean
      Check whether data meets IQ requirements. Default: True

    silent : boolean
      Turns off stdout messages. Default: False

    verbose : boolean
      Turns on additional stdout messages. Default: True

    overwrite : boolean
      Overwrite files if they exists. Default: False

    Returns
    -------
    multi-page PDF plot

    Notes
    -----
    Created by Chun Ly, 10 March 2017
     - Later modified to include check_quality keyword option
     - Later modified to include inset that shows the stacked line profile
    Modified by Chun Ly, 11 April 2017
     - Call dir_check.main() to handle multiple date directories
    Modified by Chun Ly, 13 April 2017
     - Minor bug: Check if file exists first
    Modified by Chun Ly, 10 May 2017
     - Minor bug: When .lis file contains only one entry, problem for
       appending to list
    Modified by Chun Ly, 1 June 2017
     - Added overwrite keyword option to overwrite file. Default is not to
       overwrite .pdf files
     - Bug found: No longer need sky.lis since obj.lis includes all
    Modified by Chun Ly, 6 June 2017
     - Add skysub keyword option to operate on sky-subtracted images
    Modified by Chun Ly, 14 July 2017
     - Fix tick mark locations
     - Fix y limit range for extreme outliers
    Modified by Chun Ly, 16 November 2017
     - Change prefix: rnc to rbnc
    Modified by Chun Ly, 18 December 2017
     - Import glog and call for stdout and ASCII logging
     - Pass mylogger to compute_fwhm()
    Modified by Chun Ly, 11 January 2018
     - Pass mylogger to dir_check.main()
    Modified by Chun Ly, 18 April 2018
     - Compute and report seeing at zenith
     - Show FWHM @ Zenith on right y-axis
    Modified by Chun Ly, 19 April 2018
     - Include airmass info in plots
    Modified by Chun Ly, 14 May 2018
     - Write ASCII table containing FWHM determination
    Modified by Chun Ly, 18 May 2018
     - Adjust subplots_adjust to avoid labels being cut off
     - Handle case when extra plot window (odd numbers) is available
     - Handle case with extra plot window (cont'd)
    Modified by Chun Ly, 19 May 2018
     - Include QA (PASS/USABLE/FAIL) info in table
    Modified by Chun Ly, 28 June 2018
     - Bug troubleshooting with ValueError
     - Handle ValueError for avg FWHM
    '''

    # + on 18/12/2017
    logfile = path0 + 'IQ_plot.log'
    mylogger = glog.log0(logfile)._get_logger()

    if silent == False: mylogger.info('### Begin main : ' + systime())

    # + on 11/04/2017
    dir_list, list_path = dir_check.main(path0,
                                         mylogger=mylogger,
                                         silent=silent,
                                         verbose=verbose)

    out_pdf_default = out_pdf

    # Mod on 11/04/2017
    for path in list_path:
        files = []
        file_lis = ['obj.lis', 'telluric.lis']  # Minor bug fix on 01/06/2017
        for file0 in file_lis:
            # Mod on 13/04/2017
            if exists(path + file0):
                if silent == False: mylogger.info('Reading : ' + path + file0)
                t_files = np.loadtxt(path + file0, dtype=type(str)).tolist()
                # Bug fix - 10/05/2017
                if type(t_files) == str: t_files = [t_files]
                files += t_files
            else:
                if silent == False:
                    mylogger.info('File not found : ' + path + file0)

        files.sort()

        n_files = len(files)

        # + on 14/05/2018
        FWHM_avg_arr = np.zeros(n_files)  # FWHM from averaging stack0_shift
        FWHM_avg_arr_Z = np.zeros(
            n_files)  # FWHM from averaging stack0_shift at Zenith
        FWHM_avg_QA = [
            ''
        ] * n_files  # QA check from averaging stack0_shift at Zenith
        FWHM_med_arr = np.zeros(n_files)  # FWHM from median along Y
        FWHM_med_arr_Z = np.zeros(
            n_files)  # FWHM from median along Y at Zenith
        FWHM_med_QA = [''] * n_files  # QA check from median along Y at Zenith

        # Mod on 06/06/2017
        if skysub == True:
            files = ['brnc' + file0 for file0 in files]  # Mod on 16/11/2017
            out_pdf = path+'IQ_plot.skysub.pdf' if out_pdf == '' else \
                      path+out_pdf
        else:
            out_pdf = path+'IQ_plot.raw.pdf' if out_pdf == '' else \
                      path+out_pdf

        if overwrite == False and exists(out_pdf):
            mylogger.warn('File exists!! Will not overwrite ' + out_pdf)
        else:
            pp = PdfPages(out_pdf)

            for nn in xrange(n_files):
                if silent == False: mylogger.info('Reading : ' + files[nn])
                hdr0 = fits.getheader(path + files[nn])
                # Mod on 06/06/2017
                if skysub == False:
                    im0 = fits.getdata(path + files[nn])
                else:
                    im0 = fits.getdata(path + files[nn], 'sci')

                airmass = hdr0['AIRMASS']  # + on 18/04/2018

                # Mod on 18/12/2017
                bins, fwhm0, stack0_shift = compute_fwhm(im0,
                                                         mylogger=mylogger)

                row = nn % 2
                if row == 0: fig, ax0 = plt.subplots(2, 1)

                good = np.where(fwhm0 > 0)[0]
                ax0[row].plot(bins[good],
                              fwhm0[good],
                              marker='o',
                              alpha=0.5,
                              mec='none',
                              mfc='b',
                              linestyle='none',
                              zorder=2)

                ax0[row].get_yaxis().set_tick_params(which='both',
                                                     right=True,
                                                     width=1,
                                                     direction='in')
                ax0[row].get_xaxis().set_tick_params(which='both',
                                                     top=True,
                                                     width=1,
                                                     direction='in')

                # Compute average line profile from stack0_shift
                # Later + on 10/03/2017
                avg_stack = np.average(stack0_shift, axis=0)
                x0_avg = np.arange(-25, 25)
                if row == 0: axi = fig.add_axes([0.60, 0.81, 0.25, 0.15])
                if row == 1: axi = fig.add_axes([0.60, 0.36, 0.25, 0.15])
                axi.plot(x0_avg * pscale, avg_stack, 'k-')
                axi.set_ylim([-0.4, 1.1])
                axi.set_xlim([-2.0, 2.0])
                axi.set_xticks(range(-2, 2, 1))
                axi.set_xlabel('X [arcsec]', fontsize=8)
                axi.tick_params(labelsize=8)
                axi.minorticks_on()
                p0 = [0.0, 1.0, 0.0, 2.0]
                try:
                    popt, pcov = curve_fit(gauss1d, x0_avg, avg_stack, p0=p0)
                    fit_good = 1
                except ValueError:
                    print len(np.where(np.isnan(x0_avg))[0])
                    print len(np.where(np.isnan(avg_stack))[0])
                    fit_good = 0

                if fit_good:
                    avg_fwhm0 = popt[3] * 2 * np.sqrt(2 * np.log(2)) * pscale
                    avg_fwhm_Z = avg_fwhm0 / airmass**0.6  # + on 18/04/2018

                    axi.plot(x0_avg * pscale, gauss1d(x0_avg, *popt), 'r--')
                    axi.annotate('FWHM = %.3f" (%.3f")' %
                                 (avg_fwhm0, avg_fwhm_Z), [0.50, 0.025],
                                 xycoords='axes fraction',
                                 ha='center',
                                 va='bottom',
                                 fontsize=8)
                    ax0[row].axhline(y=avg_fwhm0,
                                     linewidth=2,
                                     color='r',
                                     linestyle='--',
                                     zorder=1)

                # Median FWHM | Later + on 10/03/2017
                med_fwhm0 = np.median(fwhm0[good])
                med_fwhm0_Z = med_fwhm0 / airmass**0.6  # + on 18/04/2018
                ax0[row].axhline(y=med_fwhm0,
                                 linewidth=2,
                                 color='g',
                                 linestyle='--',
                                 zorder=1)

                # Axes labeling
                ax0[row].set_ylabel('FWHM [arcsec]')
                if row == 1 or nn == n_files - 1:
                    ax0[row].set_xlabel('Y [pixel]')
                else:
                    ax0[row].set_xticklabels([])

                if nn == n_files - 1:
                    if row == 0:
                        ax0[row + 1].axis('off')

                # Annotation
                txt0 = files[nn] + '\nTarget: ' + hdr0[
                    'OBJECT']  #.split(' ')[0]
                ax0[row].annotate(txt0, [0.025, 0.95],
                                  xycoords='axes fraction',
                                  ha='left',
                                  va='top')

                # + on 19/04/2018
                ax0[row].annotate('AM = %.3f' % airmass, [0.025, 0.025],
                                  xycoords='axes fraction',
                                  ha='left',
                                  va='bottom')

                # Later + on 10/03/2017
                if check_quality:
                    req = hdr0['REQIQ'].replace('-percentile', '%')
                    raw = hdr0['RAWIQ'].replace('-percentile', '%')

                    i_raw = [
                        ii for ii in range(len(FWHM_IQ_C))
                        if raw in FWHM_IQ_C[ii]
                    ][0]
                    i_req = [
                        ii for ii in range(len(FWHM_IQ_C))
                        if raw in FWHM_IQ_C[ii]
                    ][0]

                    txt0 = 'Req. IQ: %s [%.2f"]\n' % (req, FWHM_IQ_J[i_req])
                    txt0 += 'Raw IQ: %s [%.2f"]\n' % (raw, FWHM_IQ_J[i_raw])

                    # Mod on 18/04/2018
                    if med_fwhm0_Z <= FWHM_IQ_J[i_raw]:
                        txt0 += 'PASS'
                        FWHM_med_QA[nn] = 'PASS'  # + on 19/05/2018
                    else:
                        if med_fwhm0_Z <= FWHM_IQ_J[i_raw] * 1.25:
                            txt0 += 'USABLE'
                            FWHM_med_QA[nn] = 'USABLE'  # + on 19/05/2018
                        if med_fwhm0_Z > FWHM_IQ_J[i_raw] * 1.25:
                            txt0 += 'FAIL'
                            FWHM_med_QA[nn] = 'FAIL'  # + on 19/05/2018

                    # + on 19/05/2018
                    if fit_good:
                        if avg_fwhm_Z <= FWHM_IQ_J[i_raw]:
                            FWHM_avg_QA[nn] = 'PASS'
                        else:
                            if avg_fwhm_Z <= FWHM_IQ_J[i_raw] * 1.25:
                                FWHM_avg_QA[nn] = 'USABLE'
                            if avg_fwhm_Z > FWHM_IQ_J[i_raw] * 1.25:
                                FWHM_avg_QA[nn] = 'FAIL'

                    ax0[row].annotate(txt0, [0.975, 0.05],
                                      ha='right',
                                      xycoords='axes fraction',
                                      va='bottom')

                # Aesthetics
                ax0[row].set_xlim([0, 1050])
                if max(fwhm0[good]) > 3:
                    ax0[row].set_ylim([0, 3.0])
                else:
                    ax0[row].set_ylim([min(fwhm0) - 0.025, max(fwhm0) + 0.075])
                ax0[row].minorticks_on()

                # + on 18/04/2018
                ax2 = ax0[row].twinx()
                ax2.set_ylabel(r"FWHM @ Zenith [arcsec]")
                ax2.set_ylim(np.array(ax0[row].get_ylim()) / airmass**0.6)
                ax2.minorticks_on()
                if row != 1:
                    ax2.set_xticklabels([])

                if row == 1 or nn == n_files - 1:
                    subplots_adjust(left=0.11,
                                    bottom=0.10,
                                    top=0.975,
                                    right=0.875,
                                    wspace=0.03,
                                    hspace=0.05)
                    fig.savefig(pp, format='pdf')

                # + on 14/05/2018
                if fit_good:
                    FWHM_avg_arr[nn] = avg_fwhm0
                    FWHM_avg_arr_Z[nn] = avg_fwhm_Z
                FWHM_med_arr[nn] = med_fwhm0
                FWHM_med_arr_Z[nn] = med_fwhm0_Z
            #endfor
            if silent == False: mylogger.info('Writing : ' + out_pdf)
            pp.close()

            # + on 14/05/2018
            fwhm_out_file = out_pdf.replace('.pdf', '.tbl')
            arr0 = [
                files, FWHM_avg_arr, FWHM_avg_arr_Z, FWHM_med_arr,
                FWHM_med_arr_Z, FWHM_avg_QA, FWHM_med_QA
            ]  # Mod on 19/05/2018
            names0 = ('files', 'FWHM_avg', 'FWHM_avg_Z', 'FWHM_med',
                      'FWHM_med_Z', 'FWHM_avg_QA', 'FWHM_med_QA'
                      )  # Mod on 19/05/2018
            tab0 = Table(arr0, names=names0)
            if silent == False: mylogger.info('Writing : ' + fwhm_out_file)
            asc.write(tab0,
                      fwhm_out_file,
                      format='fixed_width_two_line',
                      overwrite=True)
            out_pdf = out_pdf_default
        #endelse
    #endfor

    if silent == False: mylogger.info('### End main : ' + systime())
示例#18
0
def main(silent=False, verbose=True):

    '''
    Main function to plot trends of peak flows

    Parameters
    ----------

    silent : boolean
      Turns off stdout messages. Default: False

    verbose : boolean
      Turns on additional stdout messages. Default: True

    Returns
    -------

    Notes
    -----
    Created by Chun Ly, 2 August 2018
    '''
    
    if silent == False: log.info('### Begin main : '+systime())

    main_file = '/Users/cly/Dropbox/Documents/Personals/Peak_Flows.xls'

    data = read_excel(main_file)

    dates = data['Date'].values
    time  = data['Time'].values
    comm0 = data['Notes'].values
    v1    = data['PF #1'].values
    v2    = data['PF #2'].values
    v3    = data['PF #3'].values

    val = [v1, v2, v3]
    avg_pf = np.average(val, axis=0)

    high_el = np.array([xx for xx in range(len(data)) if
                        '8500' in str(comm0[xx])])
    tucson  = np.array([xx for xx in range(len(data)) if
                        'Tucson' in str(comm0[xx])])

    travel  = np.array([xx for xx in range(len(data)) if
                        'Travel' in str(comm0[xx])])

    sick  = np.array([xx for xx in range(len(data)) if
                      'sick' in str(comm0[xx]) or 'Sick' in str(comm0[xx])])

    # data.Date = to_datetime(data['Date'], format='%Y-%m-%d %H:%M:%S.%f')
    # data.set_index(['Date'],inplace=True)

    fig, ax = plt.subplots(nrows=2)

    ax[0].scatter(dates[high_el], avg_pf[high_el], edgecolor='none',
                facecolor='red', alpha=0.5, label='Mt Hopkins (8500 ft)')
    ax[0].scatter(dates[tucson], avg_pf[tucson], edgecolor='none',
                facecolor='blue', alpha=0.5, label='Tucson (2500 ft)')
    ax[0].scatter(dates[travel], avg_pf[travel], edgecolor='none',
                facecolor='green', alpha=0.5, label='Travel')
    ax[0].scatter(dates[sick], avg_pf[sick], 30, marker='x', color='red',
                label='Sick')
    #data['Date'], data['PF #1'])
    #data.plot('Date', 'PF #1') #, xlim=[2016,2019])

    ax[0].legend(loc='lower right', fontsize=10)

    ax[1].scatter(time, avg_pf)
    
    if silent == False: log.info('### End main : '+systime())
示例#19
0
def main(field='',
         dr='pdr1',
         noOII=False,
         DEIMOS=False,
         Hecto=False,
         Bino=False,
         silent=False,
         verbose=True):
    '''
    Main function to plot RA and Dec for each sub-sample of NB excess emitters

    Parameters
    ----------
    field : str
      Name of field to read in. Either 'udeep' or 'deep'

    dr : str
      Data release name. Default: 'pdr1'

    noOII : boolean
      Indicate whether to NOT plot [OII] emitters. Default: False

    DEIMOS : boolean
      Indicate whether to plot Keck/DEIMOS FoV on PDF plots

    Hecto : boolean
      Indicate whether to plot MMT/Hecto FoV on PDF plots

    Bino : boolean
      Indicate whether to plot MMT/Bino FoV on PDF plots

    silent : boolean
      Turns off stdout messages. Default: False

    verbose : boolean
      Turns on additional stdout messages. Default: True

    Returns
    -------

    Notes
    -----
    Created by Chun Ly, 28 February 2018
     - Import subsample module to get NB excess emitter subsamples
     - Call subsample to get galaxy field, [gal_field]
     - Construct for loop to look over each galaxy field and subsample
     - Define output PDF path
     - Plot ra and dec for each galaxy field and NB subsamples
    Modified by Chun Ly, 1 March 2018
     - Add noOII keyword to prevent [OII] emitters from being plotted
     - log.info output PDF file
     - Add DEIMOS boolean keyword input and plot DEIMOS FoV when set
     - Set axes limit for RA and Dec for each galaxy field
     - ax.legend() visibility improvement, RA/Dec limit changes
     - Bug fix: Placement of n_subsample for ax.legend() ncol determination
     - Add Hecto boolean keyword input and plot Hecto FoV when set
     - Update call to subsample.main(); simplify code
    Modified by Chun Ly, 2 March 2018
     - Call paths module to get path
    Modified by Chun Ly, 3 March 2018
     - Read in field coordinate file for specific FoV overlay
     - Generate DEIMOS coordinate list, pass to plot_deimos_fov()
     - Bug fix: Call plot_deimos_fov() outside of for loop
     - List comprehension: require DEIMOS pointing inside field
     - If statement before calling plot_deimos_fov()
     - Get vertices from plot_deimos_fov()
    Modified by Chun Ly, 4 March 2018
     - Call in_deimos_field()
     - Create table of targets in DEIMOS field, deimos_tab0
    Modified by Chun Ly, 5 March 2018
     - Write table of targets in DEIMOS field to LaTeX files
     - Include RA, Dec, PA in DEIMOS target field table
     - Simplify fld_arr0 cmd for exec
     - Define and pass maskno into plot_deimos_fov()
    Modified by Chun Ly, 7 March 2018
     - Get average RA and Dec for fields
    Modified by Chun Ly, 16 March 2018
     - Overlay Hecto pointings from input coordinate list
     - Hecto sub-code tested. Bug fix: f_idx -> h_idx
    Modified by Chun Ly, 19 March 2018
     - Read in PRIMUS catalog; Call overlay_primus()
    Modified by Chun Ly, 20 March 2018
     - Import and call ds9_mask_overlay() to overlay ds9 regions
    Modified by Chun Ly, 21 March 2018
     - Add Bino boolean keyword and plot Binospec FoV when set
     - Change out_pdf suffix for Bino and Hecto case
     - List comprehensions for mask/config centers
     - Call subsample_in_pointing for DEIMOS fields
     - Call subsample_in_pointing for Hecto fields
    Modified by Chun Ly, 22 March 2018
     - Call in_bino_field()
     - Call subsample_in_pointing for Bino fields
    '''

    if silent == False: log.info('### Begin main : ' + systime())

    if field == '':
        log.warn("### [field] input not specified!!!")
        log.warn("### Either 'udeep' or 'deep'")
        log.warn('### Exiting!!!')
        return

    dir0 = paths.gdrive()  # Mod on 02/03/2018

    # + on 03/03/2018
    if DEIMOS or Hecto or Bino:
        field_coord_file = dir0 + 'field_coordinates.txt'
        if silent == False: log.info('### Writing : ' + field_coord_file)
        ptg_tab = asc.read(field_coord_file)

    # + on 19/03/2018
    PRIMUS_cat_file = dir0 + 'catalogs/primus/PRIMUS_mask_centers.txt'
    PRIMUS_tab0 = asc.read(PRIMUS_cat_file)

    tab0 = read_catalog.main(field=field,
                             dr=dr,
                             silent=silent,
                             verbose=verbose)
    ra0, dec0 = tab0['ra'], tab0['dec']

    # Mod on 01/03/2018
    sub_dict0, gal_dict0 = subsample.main(tab0=tab0, field=field, dr=dr)

    gal_field0 = gal_dict0.keys()  # Unique galaxy field list

    RA_lim_dict0 = {
        'UD-COSMOS': [149.25, 151.00],
        'UD-SXDS': [33.70, 35.45],
        'D-COSMOS': [148.75, 151.80],
        'D-DEEP2_3': [350.20, 353.95],
        'D-ELAIS_N1': [240.10, 245.40]
    }

    DE_lim_dict0 = {
        'UD-COSMOS': [1.30, 3.00],
        'UD-SXDS': [-5.80, -4.10],
        'D-COSMOS': [2.00, 3.75],
        'D-DEEP2_3': [-1.90, 1.10],
        'D-ELAIS_N1': [52.90, 56.85]
    }

    for t_field in gal_field0:
        f_idx = gal_dict0[t_field]  # Mod on 01/03/2018

        # + on 07/03/2018
        RA_avg = np.average(ra0[f_idx])
        DE_avg = np.average(dec0[f_idx])
        print 'RA/DE avg : ', t_field, RA_avg, DE_avg

        fig, ax = plt.subplots()

        n_subsample = 0

        for key in sub_dict0.keys():  # Mod on 01/03/2018
            s_idx = sub_dict0[key]

            # Get the intersection of f_idx and s_idx
            t_idx = list(set(f_idx) & set(s_idx))
            print t_field, key, len(t_idx)

            if len(t_idx) > 0:
                m0 = 'o' if 'NB0921' in key else '+' if 'NB0816' in key else ''
                c0 = 'red' if 'Ha' in key else 'green' if 'OIII' in key \
                     else 'blue'
                t_name = key.replace('NB0', 'NB')
                t_name = t_name.replace('OIII_', '[OIII] ')
                t_name = t_name.replace('OII_', '[OII] ')
                t_name = t_name.replace('Ha_', r'H$\alpha$ ')
                t_name += ' (' + str(len(t_idx)) + ')'

                # Mod on 01/03/2018
                if (noOII and 'OII_' in key):
                    if silent == False: log.warn('## Will not plot ' + key)
                else:
                    n_subsample += 1
                    ax.scatter(ra0[t_idx],
                               dec0[t_idx],
                               s=5,
                               marker=m0,
                               color=c0,
                               linewidth=0.5,
                               edgecolor='none',
                               alpha=0.5,
                               label=t_name)
            #endif
        #endfor

        ax.set_xlabel('Right Ascension (deg)')
        ax.set_ylabel('Declination (deg)')

        ax.set_xlim([RA_lim_dict0[t_field][1], RA_lim_dict0[t_field][0]])
        ax.set_ylim(DE_lim_dict0[t_field])
        ax.annotate(t_field, [0.025, 0.975],
                    xycoords='axes fraction',
                    fontsize=12,
                    fontweight='bold',
                    ha='left',
                    va='top')
        ax.minorticks_on()

        # Mod on 01/03/2018
        ncol = 3 if n_subsample % 3 == 0 else 2
        ax.legend(loc='lower center',
                  ncol=ncol,
                  frameon=False,
                  fontsize=10,
                  framealpha=0.9)

        # Overlay PRIMUS pointings | + on 19/03/2018
        ax = overlay_primus(PRIMUS_tab0, ax)

        # Overlay ds9 masked regions | + on 20/03/2018
        tmp_field = t_field.split('-')[-1].replace('_', '-')
        prefix = 'mask_dr1_s15b_' + field + '_NB0921_' + tmp_field + '*.reg'
        ds9_file = glob.glob(dir0 + 'catalogs/masks_Hayashi+17/' + prefix)[0]
        if silent == False: log.info('## ds9_file : ' + ds9_file)
        ds9_mask_overlay.main(ax, ds9_file, color='black', alpha=0.15)

        # Overlay DEIMOS FoV | + on 01/03/2018, Mod on 03/03/2018
        if DEIMOS:
            d_idx = [
                xx for xx in range(len(ptg_tab))
                if ((ptg_tab['Instr'][xx] == 'DEIMOS') and (
                    ptg_tab['Field'][xx] == t_field))
            ]
            if len(d_idx) > 0:
                t_tab = ptg_tab[d_idx]
                pa = t_tab['PA'].data
                a_coord = [[ra, de]
                           for ra, de in zip(t_tab['RA'], t_tab['Dec'])]

                # Mod on 05/03/2018
                maskno = [
                    mname.replace(t_field + '-D', '')
                    for mname in t_tab['MaskName']
                ]
                ax, deimos_verts0 = plot_deimos_fov(ax, a_coord, maskno, pa=pa)

                # + on 04/03/2018
                deimos_fld_idx = in_deimos_field(tab0,
                                                 deimos_verts0,
                                                 silent=silent,
                                                 verbose=verbose)

                # Get subsample sizes in each DEIMOS pointing | + on 04/03/2018
                # Mod on 21/03/2018
                deimos_outfile = dir0 + 'catalogs/' + t_field + '_deimos.tex'
                ss_in_ptg(sub_dict0,
                          deimos_fld_idx,
                          t_tab,
                          'DEIMOS',
                          deimos_outfile,
                          silent=silent,
                          verbose=verbose)
            #endif
        #endif

        # Overlay Hecto FoV | + on 01/03/2018, Mod on 16/03/2018
        if Hecto:
            h_idx = [
                xx for xx in range(len(ptg_tab))
                if ((ptg_tab['Instr'][xx] == 'Hecto') and (
                    ptg_tab['Field'][xx] == t_field))
            ]
            if len(h_idx) > 0:
                t_tab = ptg_tab[h_idx]
                a_coord = [[ra, de]
                           for ra, de in zip(t_tab['RA'], t_tab['Dec'])]

                configno = [
                    cname.replace(t_field + '-H', '')
                    for cname in t_tab['MaskName'].data
                ]
                ax = plot_hecto_fov(ax, a_coord, configno)

                hecto_fld_idx = in_hecto_field(tab0,
                                               a_coord,
                                               silent=silent,
                                               verbose=verbose)

                # Get subsample sizes in each Hecto pointing | Mod on 21/03/2018
                hecto_outfile = dir0 + 'catalogs/' + t_field + '_hecto.tex'
                ss_in_ptg(sub_dict0,
                          hecto_fld_idx,
                          t_tab,
                          'Hecto',
                          hecto_outfile,
                          silent=silent,
                          verbose=verbose)
            #endif
        #endif

        # Overlay Binospec FoV | + on 21/03/2018
        if Bino:
            b_idx = [
                xx for xx in range(len(ptg_tab))
                if ((ptg_tab['Instr'][xx] == 'Bino') and (
                    ptg_tab['Field'][xx] == t_field))
            ]
            if len(b_idx) > 0:
                t_tab = ptg_tab[b_idx]
                pa = t_tab['PA'].data
                a_coord = [[ra, de]
                           for ra, de in zip(t_tab['RA'], t_tab['Dec'])]

                maskno = [
                    mname.replace(t_field + '-B', '')
                    for mname in t_tab['MaskName'].data
                ]
                ax, bino_verts0 = plot_bino_fov(ax, a_coord, maskno, pa=pa)

                # + on 22/03/2018
                bino_fld_idx = in_bino_field(tab0,
                                             bino_verts0,
                                             silent=silent,
                                             verbose=verbose)

                # Get subsample sizes in each Bino pointing | + on 22/03/2018
                bino_outfile = dir0 + 'catalogs/' + t_field + '_bino.tex'
                ss_in_ptg(sub_dict0,
                          bino_fld_idx,
                          t_tab,
                          'Bino',
                          bino_outfile,
                          silent=silent,
                          verbose=verbose)
            #endif
        #endif

        # Mod on 01/03/2018
        out_pdf = dir0 + 'plots/' + t_field + '_radec.pdf'
        if noOII: out_pdf = out_pdf.replace('.pdf', '.noOII.pdf')
        if DEIMOS: out_pdf = out_pdf.replace('.pdf', '.DEIMOS.pdf')
        # Mod on 21/03/2018
        if Hecto and Bino:
            out_pdf = out_pdf.replace('.pdf', '.MMT.pdf')
        else:
            if Hecto: out_pdf = out_pdf.replace('.pdf', '.Hecto.pdf')
            if Bino: out_pdf = out_pdf.replace('.pdf', '.Bino.pdf')

        if silent == False: log.info('## Writing : ' + out_pdf)
        fig.savefig(out_pdf, bbox_inches='tight')

    if silent == False: log.info('### End main : ' + systime())
示例#20
0
def run(path0, clean_file='', out_script='', silent=False, verbose=True,
        overwrite=False):

    '''
    Create a .sh script to run cleanir.py for a set of files

    Parameters
    ----------

    silent : boolean
      Turns off stdout messages. Default: False

    verbose : boolean
      Turns on additional stdout messages. Default: True

    overwrite : boolean
      Overwrite files if they exists. Default: False

    Returns
    -------

    Notes
    -----
    Created by Chun Ly, 7 March 2017
    Modified by Chun Ly, 15 May 2017
     - Call dir_check.main() to handle multiple date directories
    Modified by Chun Ly, 30 May 2017
     - Added overwrite option. Default is to not overwrite .sh files
     - Fix bug when only one file is found
    Modified by Chun Ly, 18 June 2017
     - Fix to work with no date directory
    Modified by Chun Ly, 22 January 2018
     - Import glog and call for stdout and ASCII logging
     - Pass mylogger to dir_check.main()
    Modified by Chun Ly, 20 April 2018
     - Change afq to rfq - row filtering generally produces better results
    '''

    logfile  = path0+'cleanir_script.log'
    mylogger = glog.log0(logfile)._get_logger()
    
    if silent == False: mylogger.info('### Begin run : '+systime())

    if clean_file == '': clean_file = 'clean.lis'

    # + on 15/05/2017
    dir_list, list_path = dir_check.main(path0, mylogger=mylogger, silent=silent,
                                         verbose=verbose)

    # Mod on 15/05/2017
    for date,path in zip(dir_list,list_path):
        clean_file0 = path+clean_file
        if not exists(clean_file0):
            mylogger.warn('File does not exist!!!')
            mylogger.warn(clean_file0)
        else:
            if silent == False: mylogger.info('Reading : '+clean_file0)
            files = np.loadtxt(clean_file0, dtype=type(str)).tolist()
            if type(files) == str: files = [files] # Bug fix. Mod on 30/05/2017

            out_script0 = path+'run_cleanir.sh' if out_script == '' \
                          else out_script

            if date != '': # Mod on 18/06/2017
                out_script0 = out_script0.replace('.sh', '.'+date+'.sh')

            # Mod on 30/05/2017
            if overwrite == False and exists(out_script0):
                log.warn('## File found!!! : '+out_script0)
                log.warn('## Will not overwrite!!!')
            else:
                if silent == False:
                    stat0 = 'Overwriting' if exists(out_script0) else 'Writing'
                    mylogger.info(stat0+' : '+out_script0)
                f = open(out_script0, 'w')
                for ii in xrange(len(files)):
                    cmd1 = cmd0+' -rfqo '+path+'c'+files[ii]+' '+path+files[ii]
                    f.write(cmd1+'\n')
                f.close()
            #endelse
        #endelse
    #endfor

    if silent == False: mylogger.info('End run : '+systime())
示例#21
0
def check_extended(h0, s_cat, seqno, return_irsa_cat=False, silent=False,
                   verbose=True):
    '''
    Query the 2MASS extended source catalog (XSC) to identify contamination
    from extended sources

    Parameters
    ----------
    s_cat : astropy.table.Table
     Astropy-formatted table

    hd0 : FITS header
     FITS header containing WCS to determine RA/Dec

    silent : boolean
      Turns off stdout messages. Default: False

    verbose : boolean
      Turns on additional stdout messages. Default: True

    Returns
    -------

    Notes
    -----
    Created by Chun Ly, 27 February 2017
    Modified by Chun Ly, 28 February 2017
     - Include extended galaxies slightly outside of MMTCam FoV
     - Use elliptical formula to determine if inside extended source
    '''

    if silent == False: log.info('### Begin check_extended: '+systime())

    size0 = 1.25*h0['NAXIS1'] * pscale # Size of region to search
    c0 = coords.SkyCoord(ra=h0['CRVAL1'], dec=h0['CRVAL2'], unit=u.deg)
    i_cat0 = IRSA.query_region(c0, catalog='fp_xsc', spatial='Box',
                             width=size0)

    flag_ext = np.zeros(len(s_cat)) # + on 28/02/2017

    # Check if daofind sources are within elliptical region of extended sources
    # + on 28/02/2017
    if len(i_cat0) == 0:
        log.info('No extended source found for : '+seqno)
    else:
        log.info('Extended sources found for : '+seqno)
        if verbose == True: print i_cat0

        w0 = WCS(h0)
        sRA, sDec = w0.wcs_pix2world(s_cat['xcentroid'], s_cat['ycentroid'], 1)

        sc = coords.SkyCoord(ra=sRA, dec=sDec, unit=u.deg)

        for cc in range(len(i_cat0)):
            ic = coords.SkyCoord(ra=i_cat0['clon'][cc], dec=i_cat0['clat'][cc],
                                 unit=(u.hour, u.deg))
            #dist0 = ic.separation(sc).to(u.arcsec).value
            dra  = (ic.ra.deg - sRA)*3600.0 * np.cos(np.radians(ic.dec.deg))
            ddec = (ic.dec.deg - sDec)*3600.0

            ang0 = np.radians(90.0-i_cat0['sup_phi'])
            maj0 = i_cat0['r_k20fe'][cc]
            min0 = maj0*i_cat0['sup_ba'][cc]
            dist0 = ((dra*np.cos(ang0) + ddec*np.sin(ang0))/maj0)**2 + \
                    ((dra*np.sin(ang0) - ddec*np.cos(ang0))/min0)**2
            ext0 = np.where(dist0 <= 1.0)[0]
            flag_ext[ext0] = 1
            # print s_cat[ext0]
    if silent == False: log.info('### End check_extended: '+systime())

    if return_irsa_cat == False:
        return flag_ext
    else: flag_ext, i_cat0
示例#22
0
def main(silent=False, verbose=True):
    '''
  Main function to derive errors from NB photometry

  Parameters
  ----------
  filter : str
    Name of filter: 'NB704', 'NB711', 'NB816', 'NB921', 'NB973'

  NB : array
    NB magnitudes on AB system

  sig_NB : array
    error on [NB]

  excess : array
    BB - NB color on AB system

  sig_excess : array
    error on [excess]

  silent : boolean
    Turns off stdout messages. Default: False

  verbose : boolean
    Turns on additional stdout messages. Default: True

  Returns
  -------
    flux
    sig_flux
    EW
    sig_EW

  Notes
  -----
  Created by Chun Ly, 13 December 2018
  '''

    if silent == False: log.info('### Begin main : ' + systime())

    #Limiting magnitudes
    m_NB = np.array([
        26.7134 - 0.047, 26.0684, 26.9016 + 0.057, 26.7894 + 0.041,
        27.3928 + 0.032, 26.7088 - 0.109, 25.6917 - 0.051
    ])
    m_BB1 = np.array(
        [28.0829, 28.0829, 27.7568, 27.8933, 28.0829, 26.8250, 26.8250])
    m_BB2 = np.array(
        [27.7568, 27.7568, 26.8250, 28.0829, 27.7568, 00.0000, 00.0000])

    cont_lim = mag_combine(m_BB1, m_BB2, epsilon)

    limit_dict = {'m_NB': m_NB, 'm_BB': cont_lim}

    tab0, infile = get_data()
    tab0 = get_errors(tab0,
                      filt_dict0,
                      BB_filt,
                      epsilon,
                      limit_dict=limit_dict)

    outfile = infile.replace('.fits', '.errors.fits')
    tab0.write(outfile, format='fits', overwrite=True)

    plot_errors('Ha', filt_ref, tab0, limit_dict)

    plot_flux_ew_errors('Ha', filt_ref, tab0)

    if silent == False: log.info('### End main : ' + systime())
示例#23
0
def check_prefix(final_prefix, input_lis, list_path='', path='',
                 mylogger=None, prereq=False, silent=False, verbose=True):
    '''
    Check if specific files from an input list exist with given prefix

    Parameters
    ----------
    final_prefix : str
      Files with specific prefix to search for ('rnc', etc).
      This will be added before the filenames in [input_lis]

    input_lis : str
      Filename for input list to check ('arc.lis', 'flat.lis', etc.)
      If full path is included, do not provide [list_path]

    list_path : str (Optional)
      Full path for input_lis of it does not contain full path.
      Must include '/' at the end

    path : str (Optional)
      Full path to individual files if [input_lis] contents do not contain
      full path. Must include '/' at the end

    prereq: boolean
      Set if you're checking if necessary intermediate/input files are
      available. If set and files exist, returns do_run = 1.
      Default: False

    silent : boolean
      Turns off stdout messages. Default: False

    verbose : boolean
      Turns on additional stdout messages. Default: True

    Returns
    -------
    do_run : int
      0 - Not all files available
      1 - All files available

    Notes
    -----
    Created by Chun Ly, 5 May 2017
    Modified by Chun Ly, 16 May 2017
     - Switch path to an optional keyword
    Modified by Chun Ly, 2 June 2017
     - Changed path -> list_path for input_lis
     - path is now for individual frames from the input_lis
    Modified by Chun Ly, 18 December 2017
     - Implement glog logging, allow mylogger keyword input
    Modified by Chun Ly, 25 June 2018
     - Add prereq keyword option to check if intermediate files are available
    '''

    # + on 18/12/2017
    if type(mylogger) == type(None):
        mylog, clog = 0, log
    else:
        mylog, clog = 1, mylogger

    if silent == False: clog.info('### Begin check_prefix : '+systime())

    input_lis0 = list_path+input_lis
    if silent == False: clog.info('Reading : '+input_lis0) # Mod on 18/12/2017
    files = np.loadtxt(input_lis0, dtype=type(str))

    f_exist = [file0 for file0 in files if
               exists(path+final_prefix+file0) == True]
    f_noexist = [file0 for file0 in files if
                 exists(path+final_prefix+file0) == False]

    do_run = 0

    # Mod on 25/06/2018
    if not prereq:
        if len(f_exist) == 0:
            clog.info('No files exist, as expected') # Mod on 18/12/2017
            do_run = 1
        else:
            # Mod on 18/12/2017
            if len(f_exist) != len(files):
                clog.warn('Some files do not exist!')
                clog.warn(', '.join(f_noexist))
            else:
                clog.info('All files exist!!!')
    else:
        if len(f_exist) == 0:
            clog.warn('Intermediate files unavailable!!')
        else:
            clog.info('Intermediate files available')
            do_run = 1

    if silent == False: clog.info('End check_prefix : '+systime())
    return do_run
def main(silent=False, verbose=True):
    '''
    Main function to read in Starburst99 models and compute UV lum

    Parameters
    ----------

    silent : boolean
      Turns off stdout messages. Default: False

    verbose : boolean
      Turns on additional stdout messages. Default: True

    Returns
    -------

    Notes
    -----
    Created by Chun Ly, 16 June 2019
    '''

    if silent == False: log.info('### Begin main : ' + systime())

    Z = [0.05, 0.02, 0.008, 0.004, 0.0004]
    Z = np.array(Z)
    Llambda = np.array([40.12892, 40.21840, 40.25546, 40.27597, 40.30982])
    '''
    From Starburst99 CSF 1 Msun/yr model with Kroupa IMF and
    Padova stellar tracks.  Log units of erg/s/Ang. Using
    age of 0.3E9 (except 0.1E9 for 2.5xZ_solar)
    '''

    lambda0 = 1500.0 * u.Angstrom

    fig, ax = plt.subplots(ncols=2, nrows=2)

    # nuL_nu in ax[0][0]

    # nu Lnu = lambda Llambda
    nuLnu = Llambda + np.log10(lambda0.value)

    ylabel = r'$\nu L_{\nu}(1500\AA)$/SFR [erg s$^{-1}$/$M_{\odot}$ yr$^{-1}$]'
    nuLnu_fit_kr, nuLnu_fit_ch = plot_panel(ax[0][0],
                                            Z,
                                            nuLnu,
                                            ylabel,
                                            showlegend=True)

    # L_nu in ax[0][1]
    nu_offset = np.log10(c0.to(u.m / u.s).value / lambda0.to(u.m).value)
    Lnu = nuLnu - nu_offset

    ylabel = r'$L_{\nu}(1500\AA)$/SFR [erg s$^{-1}$ Hz$^{-1}$/$M_{\odot}$ yr$^{-1}$]'
    Lnu_fit_kr, Lnu_fit_ch = plot_panel(ax[0][1], Z, Lnu, ylabel)

    # Plot K98 relation
    ax[0][1].scatter([1.0],
                     -1 * np.log10(1.4e-28),
                     color='green',
                     marker='o',
                     s=50,
                     edgecolor='none',
                     alpha=0.5)
    ax[0][1].annotate('K98', [1.05, -1 * np.log10(1.4e-28 * 0.98)],
                      xycoords='data',
                      fontsize=8,
                      ha='left',
                      va='bottom')

    # Plot H-alpha in ax[1][0]
    LHa = np.array([41.061, 41.257, 41.381, 41.439, 41.536])

    ylabel = r'$L({\rm H}\alpha)$/SFR [erg s$^{-1}$/$M_{\odot}$ yr$^{-1}$]'
    LHa_fit_kr, LHa_fit_ch = plot_panel(ax[1][0], Z, LHa, ylabel, labelx=True)

    # Plot nuLnu vs LHa in ax[1][1]
    ylabel = r'$\nu L_{\nu}(1500\AA)/L({\rm H}\alpha)$'
    nuLnu_LHa_fit_kr, \
        nuLnu_LHa_fit_ch = plot_panel(ax[1][1], Z, nuLnu-LHa, ylabel,
                                      labelx=True)

    plt.subplots_adjust(left=0.085,
                        right=0.995,
                        bottom=0.07,
                        top=0.98,
                        wspace=0.225,
                        hspace=0.04)
    out_pdf = '/Users/cly/Google Drive/NASA_Summer2015/Plots/sfr_metallicity_plot.pdf'
    fig.set_size_inches(10, 8)
    fig.savefig(out_pdf)

    out_npzfile = out_pdf.replace('.pdf', '_fit.npz')
    np.savez(out_npzfile,
             nuLnu_fit_kr=nuLnu_fit_kr,
             nuLnu_fit_ch=nuLnu_fit_ch,
             Lnu_fit_kr=Lnu_fit_kr,
             Lnu_fit_ch=Lnu_fit_ch,
             LHa_fit_kr=LHa_fit_kr,
             LHa_fit_ch=LHa_fit_ch,
             nuLnu_LHa_fit_kr=nuLnu_LHa_fit_kr,
             nuLnu_LHa_fit_ch=nuLnu_LHa_fit_ch)

    if silent == False: log.info('### End main : ' + systime())
示例#25
0
def psf_contours(files=None, path0=None, out_pdf_plot=None, silent=False,
                 verbose=True):
    '''
    Generate contour plots for the MMTCam PSF

    Parameters
    ----------
    files : list
      List of files

    path0 : string
      Path to files. If not provided it is assumed that [files] has the full
      path name

    silent : boolean
      Turns off stdout messages. Default: False

    verbose : boolean
      Turns on additional stdout messages. Default: True

    Returns
    -------

    Notes
    -----
    Created by Chun Ly, 24 February 2017
     - Later mod to handle plotting styles
     - Later Mod to include header info in annotation
     - Use filled contours with plasma cmap
     - Add colorbar
    Modified by Chun Ly, 25 February 2017
     - Add colorbar for last subplot
     - Get FWHM and FWQM from fwhm_fwqm_image()
     - Call opt.curve_fit() to fit 2-D Gaussians
     - Overlay cyan contours for best 2-D fit
    Modified by Chun Ly, 26 February 2017
     - Minor stylistic plotting changes
     - Call get_mst() to get MST time
     - Draw center of best fit
     - Call draw_NE_vector() function
    Modified by Chun Ly, 26 February 2017
     - Use cosmicray_median() to interpolate over CRs
     - Use psf_im_cr over psf_im
     - Use uniform_filter() to smooth data with a size of 3 pixels
    Modified by Chun Ly, 01 March 2017
     - Annotate plot with wind data
     - Change x and y limit to give more room
    '''

    if files == None and path0 == None:
        log.error('files and path0 keywords not provided')
        log.error('Exiting!!!')
        return

    if silent == False: log.info('### Begin psf_contours: '+systime())

    if files == None and path0 != None:
        files, seqno = get_files(path0)
    else:
        if files != None: seqno = get_seqno(files)

    post_dir0 = path0 + 'post/'

    if out_pdf_plot == None: out_pdf_plot = path0+'psf_contours.pdf'

    pp = PdfPages(out_pdf_plot)

    ncols, nrows = 3, 3

    n_files = len(files)
    for ff in xrange(n_files):
        psf_file = post_dir0+seqno[ff]+'.fits'
        psf_im, h0 = fits.getdata(psf_file, header=True)

        # Identify and interpolate over any extraneous CRs | + on 26/02/2017
        psf_im_cr, mask = cosmicray_median(psf_im, thresh=5, rbox=11)
        psf_im_cr /= np.max(psf_im_cr)
        psf_im_sm = uniform_filter(psf_im_cr, size=3) # + on 26/02/2017

        if ff == 0:
            shape0 = psf_im_cr.shape
            x0 = pscale*np.arange(-1*shape0[0]/2.0,shape0[0]/2.0)
            y0 = pscale*np.arange(-1*shape0[1]/2.0,shape0[1]/2.0)

        if ff % (ncols*nrows) == 0:
            fig, ax = plt.subplots(nrows, ncols)

        row, col = ff / ncols % nrows, ff % ncols

        # Later mod on 24/02/2017, 26/02/2017
        cf = ax[row,col].contourf(x0, y0, psf_im_sm, levels=c_levels,
                                  cmap=plt.cm.plasma)

        # Mod on 25/02/2017 to include colorbar for last subplot
        # Mod on 26/02/2017 to shrink height
        if col == ncols-1:
            cax = fig.add_axes([0.925, 0.76-0.32*row, 0.01, 0.14])
        if ff == n_files-1:
            cax = fig.add_axes([0.605, 0.76-0.32*row, 0.01, 0.14])
        if col == ncols-1 or ff == n_files-1:
            cbar = fig.colorbar(cf, ax=ax[row,col], cax=cax)
            cbar.ax.tick_params(labelsize=8)

        if row == nrows-1:
            ax[row,col].set_xlabel('X [arcsec]')
        else:
            if ((n_files-1)-ff) > ncols-1:
                ax[row,col].set_xticklabels([])

        if ff == n_files-1:
            for cc in range(ncols): ax[row,cc].set_xlabel('X [arcsec]')

        if col == 0:
            ax[row,col].set_ylabel('Y [arcsec]')
        else: ax[row,col].set_yticklabels([])

        # Mod on 26/02/2017
        t_label = seqno[ff]+'.'+h0['FILTER']
        ax[row,col].annotate(t_label, [0.025,0.975], weight='bold', ha='left',
                             va='top', xycoords='axes fraction', fontsize=10)
        t_nstack = r'N$_{\rm stack}$=%i' % h0['NBRIGHT']
        ax[row,col].annotate(t_nstack, [0.975,0.975], weight='bold', ha='right',
                             va='top', xycoords='axes fraction', fontsize=10)

        # Compute image quality | + on 25/02/2017
        f_annot = 'UTC='+h0['UT']+'  MST='+get_mst(h0)+'\n' # + on 26/02/2017
        fwhm0, fwqm0 = fwhm_fwqm_size(psf_im_cr, pscale)
        f_annot += 'Area: FWHM=%.2f", FWQM=%.2f"\n' % (fwhm0, fwqm0)

        sigG = fwhm0/f_s/pscale.to(u.arcsec).value
        ini_guess = (1.0, 25, 25, sigG, sigG, 0.0, 0.0)
        gx = np.linspace(0,shape0[0]-1,shape0[0])
        gy = np.linspace(0,shape0[1]-1,shape0[1])
        gx, gy = np.meshgrid(gx, gy)

        psf_im_re = psf_im_cr.reshape(shape0[0]*shape0[1])
        popt, pcov = opt.curve_fit(gauss2d, (gx, gy), psf_im_re, p0=ini_guess)
        FWHMx = popt[3] * f_s * pscale.to(u.arcsec).value
        FWHMy = popt[4] * f_s * pscale.to(u.arcsec).value
        f_annot += r'2DFit: FW$_1$=%.2f", FW$_2$=%.2f", ' % (FWHMx,FWHMy)
        f_annot += r'$\theta$=%.2f' % np.degrees(popt[5]) + '\n'

        # + on 01/03/2017
        f_annot += 'Y1: avg=%.1f, max=%.1f, dir=%.1f\n' % (h0['Y1_AVG'],h0['Y1_MAX'],
                                                           h0['Y1_DIR'])
        f_annot += 'Y2: avg=%.1f, max=%.1f, dir=%.1f' % (h0['Y2_AVG'],h0['Y2_MAX'],
                                                         h0['Y2_DIR'])
        ax[row,col].set_xlim([-5,5])
        ax[row,col].set_ylim([-5,5])

        # Mod on 27/02/2017 to have a fill color
        ax[row,col].annotate(f_annot, [0.025,0.915], xycoords='axes fraction',
                             ha='left', va='top', fontsize=8, zorder=10,
                             bbox=bbox_props)

        # Overlay 0.25, 0.50, and 0.75 quartile contours for 2-D Gaussian fit
        # + on 25/02/2017
        f_data  = gauss2d((gx, gy), *popt)
        f_data /= np.max(f_data)
        levels  = np.array([0.25,0.5,0.75])
        CS = ax[row,col].contour(x0, y0, f_data.reshape(shape0[0],shape0[1]),
                                 colors='c', linewidth=2, cmap=None,
                                 levels=levels.tolist())
        if col==0: ax[row,col].clabel(CS, CS.levels, fmt='%.2f', inline=1,
                                      inline_spacing=0.25, fontsize=8)

        # Plot center of fit | + on 26/02/2017
        xcen = v_pscale*(-1*shape0[0]/2.0+popt[1])
        ycen = v_pscale*(-1*shape0[1]/2.0+popt[2])
        ax[row,col].plot(xcen, ycen, 'o', mfc='c', mec='none', alpha=0.5)

        hdr_annotate(h0, ax[row,col]) # + on 24/02/2017

        draw_NE_vector(h0, ax[row,col]) # + on 26/02/2017

        if ff == n_files-1:
            for cc in range(col+1,ncols): ax[row,cc].axis('off')
            for rr in range(row+1,nrows):
                for cc in range(ncols): ax[rr,cc].axis('off')

        if ff % (ncols*nrows) == ncols*nrows-1 or ff == n_files-1:
            ax[0,1].set_title('MMTCam : '+path0.split('/')[-2], loc=u'center',
                              fontsize=14, weight='bold')
            subplots_adjust(left=0.025, bottom=0.025, top=0.975, right=0.975,
                            wspace=0.02, hspace=0.02)
            fig.set_size_inches(8,8)
            fig.savefig(pp, format='pdf', bbox_inches='tight')
    #endfor

    pp.close()
    if silent == False: log.info('### End psf_contours: '+systime())
示例#26
0
def make_postage(files=None, path0=None, n_stack=5, size=50,
                 user='******', passwd='', silent=False, verbose=True):
    '''
    Create cut-outs and median stack to produce image of the
    point-spread function

    Parameters
    ----------
    files : list
      List of files

    path0 : string
      Path to files. If not provided it is assumed that [files] has the full
      path name

    silent : boolean
      Turns off stdout messages. Default: False

    verbose : boolean
      Turns on additional stdout messages. Default: True

    Returns
    -------

    Notes
    -----
    Created by Chun Ly, 23 February 2017
    Modified by Chun Ly, 24 February 2017
     - Include FITS header in cutout images
    Modified by Chun Ly, 26 February 2017
     - Use cosmicray_median() to interpolate over CRs
     - Include number of stack sources in FITS header
    Modified by Chun Ly, 28 February 2017
     - Call query_mmtlog_wind() function
     - Add user and passwd keyword to pass on
    Modified by Chun Ly, 1 March 2017
     - Check if wind data table is available before running query_mmtlog_wind()
     - Call wind_avg_max() function
    '''

    if files == None and path0 == None:
        log.error('files and path0 keywords not provided')
        log.error('Exiting!!!')
        return

    if silent == False: log.info('### Begin make_postage: '+systime())

    if files == None and path0 != None:
        files, seqno = get_files(path0)
        # path0 = None # Reset since files will have full path
    else:
        if files != None: seqno = get_seqno(files)

    # Query for wind data | + on 28/02/2017
    # Mod on 01/03/2017 to check if file exists
    wind_file = path0+'wind_data.tbl'
    if not exists(wind_file):
        u_start = fits.getheader(files[0])['DATE-OBS']
        u_stop  = fits.getheader(files[-1])['DATE-OBS']
        wind_tab0 = query_mmtlog_wind(u_start, u_stop, user=user,
                                      passwd=passwd, path0=path0)
    else:
        if silent == False: log.info('### File found! Reading : '+wind_file)
        wind_tab0 = asc.read(wind_file, format='fixed_width_two_line')

    post_dir0 = path0 + 'post/'
    if not exists(post_dir0):
        if silent == False: log.info('Creating : '+post_dir0)
        os.mkdir(post_dir0)

    out_cat_dir0 = path0+out_cat_dir
    for ff in xrange(len(files)):
        basename = os.path.basename(files[ff])
        image, hdr = fits.getdata(files[ff], header=True)
        mean, median, std = sigma_clipped_stats(image, sigma=2.0, iters=5)
        image_sub = image - median

        in_cat = out_cat_dir0+basename.replace('.fits.gz','.tbl').\
                 replace('.fits','.tbl')
        s_cat  = asc.read(in_cat, format='fixed_width_two_line')

        # Handle failure if only one source is available and is near edge
        # + on 28/02/2017
        not_edge = np.where((s_cat['xcentroid'] > 50.0) &
                            (s_cat['xcentroid'] <= hdr['NAXIS1']-50) &
                            (s_cat['ycentroid'] > 50.0) &
                            (s_cat['ycentroid'] <= hdr['NAXIS2']-50))[0]
        s_cat = s_cat[not_edge]

        # + on 28/02/2017
        good  = np.where(s_cat['peak'] >= 0.33*max(s_cat['peak']))[0]
        s_cat = s_cat[good]

        n_bright = np.min([n_stack,len(s_cat)])
        bright   = range(n_bright)
        s_cat    = s_cat[bright]

        x0 = np.round_(s_cat['xcentroid'])
        y0 = np.round_(s_cat['ycentroid'])

        im0 = np.zeros( (len(bright), size, size) )
        size2d = u.Quantity((size, size), u.pixel)
        for ii in range(n_bright):
            pos0 = (x0[ii], y0[ii])
            cutout = Cutout2D(image_sub, pos0, size2d, mode='partial',
                              fill_value=np.nan)
            # Identify and interpolate over CRs
            cutout_cr, crmask = cosmicray_median(cutout.data, thresh=5, rbox=11)
            im0[ii] = cutout_cr/np.max(cutout_cr)

        out_fits = post_dir0+seqno[ff]+'.fits'
        psf_im = np.nanmedian(im0, axis=0)
        hdr.set('NBRIGHT', n_bright) # + on 26/02/2017

        wind_avg_max(wind_tab0, hdr) # + on 01/03/2017

        fits.writeto(out_fits, psf_im, hdr, overwrite=True)

    if silent == False: log.info('### End make_postage: '+systime())
def main(path0, targets, outfile=None, silent=False, verbose=True):
    '''
    Generate ASCII file summarizing observations

    Parameters
    ----------
    path0 : str
      Parent path for all files

    silent : boolean
      Turns off stdout messages. Default: False

    verbose : boolean
      Turns on additional stdout messages. Default: True

    Returns
    -------

    Notes
    -----
    Created by Chun Ly, 25 April 2017
    Modified by Chun Ly, 5 May 2017
     - Handle overwriting file
    Modified by Chun Ly, 3 June 2017
     - Bug fix: Check if hdr_info.QA.tbl exists
    '''

    if silent == False: log.info('### Begin main : ' + systime())

    Targets, ObsDate, ObsSet = [], [], []
    TotalTime, gratwave, Airmass = [], [], []
    TellStar, TellSet, TellAM = [], [], []  # Later Mod on 25/04/2017

    for tt in range(len(targets)):
        tt_path = path0 + targets[tt] + '/'
        dir_list, list_path = dir_check.main(tt_path,
                                             silent=True,
                                             verbose=False)

        cnt = 0
        for path in list_path:
            # Mod on 25/04/2017
            txt = targets[tt] if cnt == 0 else '...'
            Targets.append(txt)  #targets[tt])

            QA_file = path + '/hdr_info.QA.tbl'
            # Mod on 03/06/2017
            if not exists(QA_file):
                log.warn('## File not found! ' + QA_file)

                ObsDate.append('N/A')
                gratwave.append('N/A')

                ObsSet.append('N/A')
                TotalTime.append('N/A')
                Airmass.append('N/A')

                TellStar.append('N/A')
                TellSet.append('N/A')
                TellAM.append('N/A')
            else:
                QA_tab = asc.read(QA_file, format='fixed_width_two_line')

                # All science targets
                idx = [
                    xx for xx in range(len(QA_tab))
                    if ('obj' in QA_tab['QA'][xx]) or (
                        'sky' in QA_tab['QA'][xx])
                ]

                # Later Mod on 25/04/2017
                tab_ref = QA_tab[idx][0]
                t_date = tab_ref['UT_date'].split('T')[0]
                exptime = tab_ref['exptime']

                ObsDate.append(t_date)
                gratwave.append(tab_ref['gratwave'])

                ObsSet.append(str(len(idx)) + 'x' + str(exptime) + 's')
                TotalTime.append('%.2f' % (len(idx) * exptime / 60.0))

                AM0 = QA_tab['airmass'][idx]
                Airmass.append('%.3f-%.3f' % (np.min(AM0), np.max(AM0)))

                t_idx = [
                    xx for xx in range(len(QA_tab))
                    if ('telluric' in QA_tab['QA'][xx])
                ]
                t_names = list(set(QA_tab['object'][t_idx]))

                telstar, telset, telAM = get_telluric_info(
                    QA_tab, t_idx, t_names)
                TellStar.append(telstar)
                TellSet.append(telset)
                TellAM.append(telAM)  # Later + on 25/04/2017
                cnt += 1
            #endelse
        #endfor
    #endfor

    arr0 = [
        Targets, ObsDate, ObsSet, TotalTime, gratwave, Airmass, TellStar,
        TellSet, TellAM
    ]
    names0 = ('Name', 'UT_Date', 'Sequence', 'Int_Time', 'Grating_Wave',
              'Airmass', 'Telluric_Star', 'Telluric_Seq', 'Telluric_AM')
    tab0 = Table(arr0, names=names0)

    print tab0

    if outfile == None: outfile = path0 + 'obs_summary.txt'

    # Mod on 06/05/2017
    if silent == False:
        stat0 = 'Overwriting : ' if exists(outfile) else 'Writing : '
        log.info(stat0 + outfile)
    asc.write(tab0,
              output=outfile,
              format='fixed_width_two_line',
              overwrite=True)

    if silent == False: log.info('### End main : ' + systime())
示例#28
0
def main(rawdir, line_source='', mylogger=None, silent=False, verbose=True):
    '''
    Main function for wave_cal_script

    Parameters
    ----------
    rawdir : str
      Path to raw files. Must end in a '/'

    line_source : str
      Type of lines to use for wavelength calibration. Option is
      either 'arc' or 'OH

    silent : boolean
      Turns off stdout messages. Default: False

    verbose : boolean
      Turns on additional stdout messages. Default: True

    Returns
    -------

    Notes
    -----
    Created by Chun Ly, 7-8 October 2017
    Modified by Chun Ly, 8 November 2017
     - Specify lampspec and outspec
    Modified by Chun Ly, 16 November 2017
     - Handle line_source == 'OH'
     - Generalized arrays: arc -> frame
     - Specify GNIRS log file
    Modified by Chun Ly, 20 November 2017
     - Bug fix: prefix needed for [frames] for line_source == OH
    Modified by Chun Ly,  9 January 2018
     - Import glog and call for stdout and ASCII logging
    Modified by Chun Ly,  9 January 2018
     - Allow mylogger keyword
    Modified by Chun Ly, 30 May 2018
     - Change order for nswavelength fitting
    Modified by Chun Ly, 16 June 2018
     - Change coordlist for OH skylines
    Modified by Chun Ly, 19 June 2018
     - Force function to legendre
     - Set fwidth in nswavelength call to depend on slitwidth
    Modified by Chun Ly, 21 June 2018
     - Include ending print statement
    Modified by Chun Ly, 10 July 2018
     - Modify threshold for OH lines from 50 to 25
    '''

    # Mod on 10/01/2018
    if type(mylogger) == type(None):
        logfile = rawdir + 'QA_wave_cal.log'
        mylogger = glog.log0(logfile)._get_logger()

    if silent == False: mylogger.info('### Begin main : ' + systime())

    timestamp = systime().replace(':', '.')
    logfile = rawdir + 'gnirs_' + timestamp + '.log'

    rawdir = check_path(rawdir)

    if line_source == '':
        mylogger.warn("Must specify line_source keyword: ")
        mylogger.warn("line_source='arc' or line_source='OH'")
        mylogger.warn("Exiting!!!")
        return
    else:
        out_script = rawdir + 'wave_cal_' + line_source + '.py'

    if silent == False: mylogger.info('Writing : ' + out_script)

    f0 = open(out_script, 'w')

    line0 = [
        'iraf.gemini(_doprint=0)', 'iraf.gemini.gnirs(_doprint=0)',
        'iraf.gemini.unlearn()', 'iraf.gemini.gemtools.unlearn()',
        'iraf.gemini.gnirs.unlearn()', 'iraf.set(stdimage="imt4096")',
        'iraf.gemini.nsheaders("gnirs")'
    ]
    #'iraf.gemini.gnirs.logfile = "%s"' % logfile] # + on 16/11/2017

    f0.writelines("\n".join(line0) + "\n")

    if line_source == 'arc': frame_list = rawdir + 'arc.lis'
    if line_source == 'OH': frame_list = rawdir + 'obj.OH.lis'

    frames = np.loadtxt(frame_list, dtype=type(str))
    if line_source == 'OH':
        frames = ['rbnc' + file0 for file0 in frames]

    frame_hdr = fits.getheader(rawdir + frames[0])

    crpix = n_sp_pix / 2.0
    crval = frame_hdr['gratwave'] * 1e4  # in Angstroms
    if frame_hdr['FILTER2'] == 'X_G0518':
        cdelt = -0.094 * 1e4 / n_sp_pix
    if frame_hdr['FILTER2'] == 'J_G0517':
        cdelt = -0.113 * 1e4 / n_sp_pix
    mylogger.info('## CRVAL : %.1f ' % crval)
    mylogger.info('## CDELT : %.1f  CRPIX : %.1f' % (cdelt, crpix))

    line1 = ['crval = %f' % crval, 'crpix = %f' % crpix, 'cdelt = %f' % cdelt]
    f0.writelines("\n".join(line1) + "\n")

    # Get slit length | + on 19/06/2018q
    slitwidth = np.float(frame_hdr['SLIT'].split('arcsec')[0])
    pscale = np.sqrt(frame_hdr['CD1_1']**2 +
                     frame_hdr['CD2_1']**2) * 3600.0 * u.arcsec
    fwidth = 1.5 * slitwidth / pscale.to(u.arcsec).value

    if line_source == 'arc':
        coordlist = 'gnirs$data/argon.dat'
        database = 'database/'
        threshold = 50
    if line_source == 'OH':
        coordlist = rawdir + 'rousselot2000_convl.dat'
        if not exists(coordlist):
            log.warn('File does not exists!!! : ' + coordlist)
        database = 'database_OH/'
        threshold = 25

    # Mod on 08/11/2017
    line2 = [
        "coordlist = '%s'" % coordlist,
        "database  = '%s'" % database,
        "lampspec  = '%s_stack.fits'" % line_source,
        "outspec   = 'w%s_stack.fits'" % line_source,
        "threshold = %f" % threshold,
        "logfile   = '%s'" % logfile
    ]  # + on 16/11/2017

    f0.writelines("\n".join(line2) + "\n")

    # Mod on 08/11/2017, 16/11/2017
    cmd = "iraf.gnirs.nswavelength(lampspec, outprefix='',"+\
          "outspectra=outspec, crval=crval, cdelt=cdelt, crpix=crpix, "+\
          "coordlist=coordlist, database=database, fl_inter='yes', "+\
          "function='legendre', cradius=20, threshold=threshold, "+\
          "fwidth=%.1f, " % fwidth +"order=3, logfile=logfile)"

    f0.write(cmd + '\n')

    f0.write('print("Completed! Return to other terminal and hit RETURN")\n')
    f0.close()

    if silent == False: mylogger.info('### End main : ' + systime())
示例#29
0
def find_stars(files=None, path0=None, plot=False, out_pdf_plot=None,
               silent=False, verbose=True):
    '''
    Find stars in an image and return a catalog of positions

    Parameters
    ----------
    files : list
      List of files

    path0 : string
      Directory path to files.

    silent : boolean
      Turns off stdout messages. Default: False

    verbose : boolean
      Turns on additional stdout messages. Default: True
	  
    Returns
    -------

    Notes
    -----
    Created by Chun Ly, 23 February 2017
     - Later modified to plot images and overlay sources
     - Adjust scale to using IRAF's zscale
     - Call remove_dup_sources()
    Modified by Chun Ly, 28 February 2017
     - Call check_extended() to get flag indicating extended, flag_ext
    '''

    if silent == False: log.info('### Begin find_stars: '+systime())

    if files == None and path0 == None:
        log.error('files and path0 keywords not provided')
        log.error('Exiting!!!')
        return

    if files == None and path0 != None:
        files, seqno = get_files(path0)
        # path0 = None # Reset since files will have full path
    else:
        if files != None: seqno = get_seqno(files)

    # Later + on 23/02/2017
    out_cat_dir0 = path0+out_cat_dir
    if not exists(out_cat_dir0):
        if silent == False: log.info('Creating : '+out_cat_dir0)
        os.mkdir(out_cat_dir0)

    s_date = path0.split('/')[-2] # Mod on 25/02/2017 for minor bug

    if plot == True:
        if out_pdf_plot == None:
            out_pdf_plot = path0+'find_stars.pdf'
        pp = PdfPages(out_pdf_plot)

    for ff in xrange(len(files)): #[34,35,36,37,38,39]: #xrange(len(files)):
        basename = os.path.basename(files[ff])
        image, hdr = fits.getdata(files[ff], header=True)
        mean, median, std = sigma_clipped_stats(image, sigma=2.0, iters=5)
        image_sub = image - median

        if verbose == True:
            log.info('%s mean/med/sig: %f %f %f' %
                     (seqno[ff], mean, median, std))
        #Later Mod on 23/02/2017 to lower threshold
        daofind = DAOStarFinder(fwhm=8.0, threshold=5.*std)
        s_cat = daofind(image_sub)

        # Exclude saturated objects
        unsat = np.where(s_cat['peak'] <= 60000.0)[0]
        sat   = np.where(s_cat['peak'] >  60000.0)[0]
        cat_sat = s_cat[sat]
        s_cat = s_cat[unsat]
        s_cat.sort(['peak'])
        s_cat.reverse()
        # s_cat.pprint()

        # + on 28/02/2017
        flag_ext = check_extended(hdr, s_cat, seqno[ff], verbose=False)
        i_extend = np.where(flag_ext == 1)[0]
        i_point  = np.where(flag_ext == 0)[0]
        if len(i_extend) > 0:
            cat_ext = s_cat[i_extend]
            s_cat   = s_cat[i_point]
        #endif

        # Later + on 23/02/2017
        bad = remove_dup_sources(s_cat)
        if len(bad) > 0:
            cat_bad = s_cat[bad]
            s_cat.remove_rows(bad)

        if ff == 0 and silent == False: s_cat.pprint()

        # + on 23/02/2017
        out_cat = out_cat_dir0+basename.replace('.fits.gz','.tbl')
        out_cat = out_cat.replace('.fits','.tbl')
        s_cat.write(out_cat, format='ascii.fixed_width_two_line',
                    overwrite=True)

        # Write extended catalog | + on 28/02/2017
        if len(i_extend) >0:
            out_cat_ext = out_cat.replace('.tbl','.ext.tbl')
            cat_ext.write(out_cat_ext, format='ascii.fixed_width_two_line',
                          overwrite=True)

        # Later + on 23/02/2017
        if len(bad) >0 and verbose == True:
            log.info('The following will be removed : ')
            cat_bad.pprint()
        if len(bad) >0:
            out_cat_bad = out_cat.replace('.tbl','.bad.tbl')
            cat_bad.write(out_cat_bad, format='ascii.fixed_width_two_line',
                          overwrite=True)

        if plot == True:
            pos0  = (s_cat['xcentroid'], s_cat['ycentroid'])
            aper0 = CircularAperture(pos0, r=8.)

            pos0      = (cat_sat['xcentroid'], cat_sat['ycentroid'])
            sat_aper0 = CircularAperture(pos0, r=8.)

            pos0      = (cat_bad['xcentroid'], cat_bad['ycentroid'])
            bad_aper0 = CircularAperture(pos0, r=8.)

            fig, ax = plt.subplots()
            z1, z2 = zscale.get_limits(image_sub)
            # print z1, z2
            norm = ImageNormalize(vmin=z1, vmax=z2) #stretch=SqrtStretch())
            ax.imshow(image_sub, cmap='Greys', origin='lower', norm=norm)
            aper0.plot(color='blue', lw=1.5, alpha=0.5)
            sat_aper0.plot(color='red', lw=1.5, alpha=0.5)
            bad_aper0.plot(color='magenta', lw=1.5, alpha=0.5)

            # Label bright sources | + on 28/02/2017
            bright = np.where(s_cat['peak'] >= 0.33*max(s_cat['peak']))[0]
            for nn in bright:
                t_pos = [s_cat['xcentroid'][nn], s_cat['ycentroid'][nn]+10]
                ax.annotate(str(nn+1), t_pos, xycoords='data', ha='center',
                            va='bottom', color='b', weight='medium')

            # Mark sources excluded by extended criteria | + on 28/02/2017
            if len(i_extend) > 0:
                ax.plot(cat_ext['xcentroid'], cat_ext['ycentroid'], 'rx', linewidth=2)

            t_ann = s_date+'/'+os.path.basename(files[ff])
            ax.set_title(t_ann, loc=u'center', fontsize=14, weight='bold')
            #ax.annotate(t_ann, [0.025,0.975], xycoords='axes fraction',
            #             ha='left', va='top', bbox=bbox_props)
            ax.set_xlim([0,hdr['NAXIS1']])
            ax.set_ylim([0,hdr['NAXIS2']])
            ax.set_xlabel('X [pixels]')
            ax.set_ylabel('Y [pixels]')

            fig.set_size_inches(8,8)
            fig.savefig(pp, format='pdf', bbox_inches='tight')
    #endfor
    if plot == True:
        if silent == False:
            log.info('## Writing : '+out_pdf_plot+' | '+systime())
        pp.close()

    if silent == False: log.info('### End find_stars: '+systime())
示例#30
0
def query_mmtlog_wind(u_start, u_stop, user='******', passwd='', path0='',
                      silent=False, verbose=True):
    '''
    Query ops.mmto.arizona.edu's log for wind data.
    Note: This code requires specifying the password

    Parameters
    ----------
    u_start : string
     UTC start time. Formatted as 'YYYY-MM-DD HH:MM:SS'

    u_stop : string
     UTC stop time. Formatted as 'YYYY-MM-DD HH:MM:SS'

    user : string
     Username to login. Default: 'webuser'

    passwd : string
     Password for user. Default: ''

    path0 : string
      Directory path to files.

    silent : boolean
      Turns off stdout messages. Default: False

    verbose : boolean
      Turns on additional stdout messages. Default: True

    Returns
    -------
    tab0 : astropy.table.Table
     Astropy table containing young and young2 wind data

    Notes
    -----
    Created by Chun Ly, 28 February 2017
    Modified by Chun Ly, 01 March 2017
     - Return tab0
    '''

    if passwd == '':
        log.error('Must specify password!')
        log.error('Exiting!!!')
        return

    if silent == False: log.info('### Begin query_mmtlog_wind: '+systime())

    m_start = Time(u_start).to_datetime(timezone=utc_mst)
    m_start = m_start.strftime('%Y-%m-%d %H:%M%:%S')
    m_stop  = Time(u_stop).to_datetime(timezone=utc_mst) + \
              timedelta(seconds=10*60.0) # Add 10 min. to have enough buffer
    m_stop  = m_stop.strftime('%Y-%m-%d %H:%M%:%S')

    conn = pymysql.connect(host='ops.mmto.arizona.edu', user=user,
                           passwd=passwd, db='mmtlogs')
    cur = conn.cursor()

    sql1 = "SELECT timestamp,young_wind_speed,young_wind_direction FROM "+\
           "young_background_log where timestamp >= '"+m_start+"' AND "+\
           "timestamp < '"+m_stop+"'"
    # print sql1
    n_entries = cur.execute(sql1)
    results1 = cur.fetchall()

    sql2 = sql1.replace('young', 'young2')
    cur.execute(sql2)
    results2 = cur.fetchall()

    time0   = np.repeat('XXXX-XX-XX XX:XX:XX', n_entries)
    speed1  = np.zeros(n_entries)
    direct1 = np.zeros(n_entries)
    speed2  = np.zeros(n_entries)
    direct2 = np.zeros(n_entries)

    for nn in xrange(n_entries):
        time0[nn]   = results1[nn][0].isoformat()
        speed1[nn]  = results1[nn][1]
        direct1[nn] = results1[nn][2]

        speed2[nn]  = results2[nn][1]
        direct2[nn] = results2[nn][2]

    outfile = path0+'wind_data.tbl'
    vec0   = [time0, speed1, direct1, speed2, direct2]
    names0 = ('MST_time','speed1', 'direct1', 'speed2', 'direct2')
    tab0 = Table(vec0, names=names0)
    if silent == False: log.info('## Writing : '+outfile)
    asc.write(tab0, outfile, format='fixed_width_two_line', overwrite=True)
    if silent == False: log.info('### End query_mmtlog_wind: '+systime())
    return tab0