from ci import mlp from ci import helper import copy from itertools import izip import matplotlib.pyplot as plt argmax = lambda array: max(izip(array, xrange(len(array))))[1] pttNet = [mlp.randNet([2, 5, 2], type=mlp.SIGMOID), mlp.randNet([2, 10, 2], type=mlp.SIGMOID), mlp.randNet([2, 15, 2], type=mlp.SIGMOID), mlp.randNet([2, 5, 5, 2], type=mlp.SIGMOID)] learningRate = [0.01, 0.05, 0.1, 0.2] epoch = 100 f = open("cross.pat", "r") fw = open("report/cross/report.txt", "w") lines = f.readlines() datas = [] for line in lines: words = line.split(" ") datas.append([float(word) for word in words]) floods = helper.crossvalidation(datas, 0.1, shuffer=True) plt.ion() plt.show() m_cor = 0.0 for pn in pttNet: for lr in learningRate: s_cor = 0.0 b_cor = 0.0
from ci import mlp from ci import helper import copy from itertools import izip import matplotlib.pyplot as plt import numpy as np argmax = lambda array: max(izip(array, xrange(len(array))))[1] pttNet = [mlp.randNet([4, 5, 3], type=mlp.SIGMOID), mlp.randNet([4, 10, 3], type=mlp.SIGMOID), mlp.randNet([4, 15, 3], type=mlp.SIGMOID), mlp.randNet([4, 5, 5, 3], type=mlp.SIGMOID)] learningRate = [0.01, 0.05, 0.1, 0.2] epoch = 100 f = open("iris.pat", "r") fw = open("report/iris/report.txt", "w") lines = f.readlines() datas = [] for line in lines: words = line.split(" ") datas.append([float(word) for word in words]) datas = np.array(datas) for i in range(0, 4): datas[:,i] = (datas[:,i] - np.min(datas[:,i]))/(np.max(datas[:,i])-np.min(datas[:,i])) datas = datas.tolist() floods = helper.crossvalidation(datas, 0.1, shuffer=True) plt.ion()