示例#1
0
def run_kwarg_scan(ModelClass, model_kwarg_sets,
                   t_output_every, t_upto,
                   force_resume=True, parallel=False):
    """Run many models with the same parameters but variable `field`.

    For each `val` in `vals`, a new model will be made, and run up to a time.
    The output directory is automatically generated from the model arguments.

    Parameters
    ----------
    ModelClass: type
        A class or factory function that returns a model object by
        calling `ModelClass(model_kwargs)`
    model_kwarg_sets: list[dict]
        List of argument sets, each of which can instantiate a model.
    t_output_every: float
        see :class:`Runner`.
    t_upto: float
        Run each model until the time is equal to this
    parallel: bool
        Whether or not to run the models in parallel, using the Multiprocessing
        library. If `True`, the number of concurrent tasks will be equal to
        one less than the number of available cores detected.
    """
    task_runner = _TaskRunner(ModelClass, t_output_every, t_upto, force_resume)
    run_func(task_runner, model_kwarg_sets, parallel)
示例#2
0
def resume_runs(dirnames, t_output_every, t_upto, parallel=False):
    """Resume many models, and run.

    Parameters
    ----------
    dirnames: list[str]
        List of output directory paths from which to resume.
    output_every: int
        see :class:`Runner`.
    t_upto: float
        Run each model until the time is equal to this
    parallel: bool
        Whether or not to run the models in parallel, using the Multiprocessing
        library. If `True`, the number of concurrent tasks will be equal to
        one less than the number of available cores detected.
    """
    run_model_partial = partial(run_model, t_output_every, force_resume=True,
                                t_upto=t_upto)
    run_func(run_model_partial, dirnames, parallel)