def compute_score(self, gts, res): """ Main function to compute CIDEr score :param hypo_for_image (dict) : dictionary with key <image> and value <tokenized hypothesis / candidate sentence> ref_for_image (dict) : dictionary with key <image> and value <tokenized reference sentence> :return: cider (float) : computed CIDEr score for the corpus """ cider_scorer = CiderScorer(n=self._n) for res_id in res: hypo = res_id['caption'] ref = gts[res_id['image_id']] # Sanity check. assert(type(hypo) is list) assert(len(hypo) == 1) assert(type(ref) is list) assert(len(ref) > 0) cider_scorer += (hypo[0], ref) (score, scores) = cider_scorer.compute_score(self._df) return score, scores
def __init__(self, n=4, sigma=6.0, df="corpus"): # set cider to sum over 1 to 4-grams self._n = n # set the standard deviation parameter for gaussian penalty self._sigma = sigma # set which where to compute document frequencies from self._df = df self.cider_scorer = CiderScorer(n=self._n, df_mode=self._df)
class CiderD(nn.Module): """ Main Class to compute the CIDEr metric """ def __init__(self, n=4, sigma=6.0, df="corpus"): super(CiderD, self).__init__() # set cider to sum over 1 to 4-grams self._n = n # set the standard deviation parameter for gaussian penalty self._sigma = sigma # set which where to compute document frequencies from self._df = df self.cider_scorer = CiderScorer(n=self._n, df_mode=self._df) def compute_score(self, gts, res): """ Main function to compute CIDEr score :param hypo_for_image (dict) : dictionary with key <image> and value <tokenized hypothesis / candidate sentence> ref_for_image (dict) : dictionary with key <image> and value <tokenized reference sentence> :return: cider (float) : computed CIDEr score for the corpus """ # clear all the previous hypos and refs self.cider_scorer.clear() for res_id in res: hypo = res_id['caption'] ref = gts[res_id['image_id']] # Sanity check. assert (type(hypo) is list) assert (len(hypo) == 1) assert (type(ref) is list) assert (len(ref) > 0) self.cider_scorer += (hypo[0], ref) (score, scores) = self.cider_scorer.compute_score() return score, scores def method(self): return "CIDEr-D"