示例#1
0
def test_to_resolvers_single():
    resolver = cirq.ParamResolver({})
    assert list(cirq.to_resolvers(resolver)) == [resolver]
    assert list(cirq.to_resolvers({})) == [resolver]
示例#2
0
def test_to_resolvers_iterable():
    resolvers = [cirq.ParamResolver({'a': 2}), cirq.ParamResolver({'a': 1})]
    assert list(cirq.to_resolvers(resolvers)) == resolvers
    assert list(cirq.to_resolvers([{'a': 2}, {'a': 1}])) == resolvers
示例#3
0
def test_to_sweep_single_resolver(r_gen):
    sweep = cirq.to_sweep(r_gen())
    assert isinstance(sweep, cirq.Sweep)
    assert list(sweep) == [cirq.ParamResolver({'a': 1})]
示例#4
0
def test_to_resolvers_none():
    assert list(cirq.to_resolvers(None)) == [cirq.ParamResolver({})]
示例#5
0
def test_to_sweep_sweep():
    sweep = cirq.Linspace('a', 0, 1, 10)
    assert cirq.to_sweep(sweep) is sweep


@pytest.mark.parametrize(
    'r_gen',
    [
        lambda: {
            'a': 1
        },
        lambda: {
            sympy.Symbol('a'): 1
        },
        lambda: cirq.ParamResolver({'a': 1}),
        lambda: cirq.ParamResolver({sympy.Symbol('a'): 1}),
    ],
)
def test_to_sweep_single_resolver(r_gen):
    sweep = cirq.to_sweep(r_gen())
    assert isinstance(sweep, cirq.Sweep)
    assert list(sweep) == [cirq.ParamResolver({'a': 1})]


@pytest.mark.parametrize(
    'r_list_gen',
    [
        # Lists
        lambda: [{
            'a': 1
a, b = sympy.symbols('a b')

# 2qubits circuit
q0, q1 = cirq.GridQubit.rect(1, 2)

# rx gate on q0 with parameter a, and ry gate on q1 with parameter b
circuit = cirq.Circuit(
    cirq.rx(a).on(q0),
    cirq.ry(b).on(q1), cirq.CNOT(control=q0, target=q1))

SVGCircuit(circuit)


# state vector at a=0.5, b=-0.5
resolver = cirq.ParamResolver({a: 0.5, b: -0.5})
output_state_vector = cirq.Simulator().simulate(circuit, resolver).final_state
output_state_vector


#gets an array([ 0.9387913 +0.j        , -0.23971277+0.j        , 0.        +0.06120872j,  0.        -0.23971277j], dtype=complex64)

z0 = cirq.Z(q0)

qubit_map={q0: 0, q1: 1}

z0.expectation_from_wavefunction(output_state_vector, qubit_map).real



# result 0.8775825500488281
示例#7
0
def test_simulate_sweep_parameters_not_resolved():
    a = cirq.LineQubit(0)
    simulator = cirq.DensityMatrixSimulator()
    circuit = cirq.Circuit(cirq.XPowGate(exponent=sympy.Symbol('a'))(a), cirq.measure(a))
    with pytest.raises(ValueError, match='symbols were not specified'):
        _ = simulator.simulate_sweep(circuit, cirq.ParamResolver({}))
示例#8
0
    def f(x):
        # Create circuit
        betas = x[:p]
        betas_dict = {'beta' + str(index): betas[index] for index in range(p)}
        gammas = x[p:]
        gammas_dict = {
            'gamma' + str(index): gammas[index]
            for index in range(p)
        }
        param_resolver = cirq.ParamResolver({**betas_dict, **gammas_dict})

        # VALIDATE STATE VECTOR SIMULATION
        # qsim_circuit = cirq.resolve_parameters(cirq_circuit, param_resolver)
        # qsim_circuit_01 = qsimcirq.QSimCircuit(cirq.resolve_parameters(meas_circuit, param_resolver))
        # qsim_circuit_04 = qsimcirq.QSimCircuit(cirq.resolve_parameters(meas_circuit, param_resolver))
        # qsim_circuit_16 = qsimcirq.QSimCircuit(cirq.resolve_parameters(meas_circuit, param_resolver))

        # sv_sim_start = time.time()
        # sv_sim_result = sv_sim.simulate(cirq_circuit, param_resolver=param_resolver)
        # sv_sim_time = time.time() - sv_sim_start

        qs_sim_start = time.time()
        qs_sim_result = qs_sim_16.simulate(cirq_circuit,
                                           param_resolver=param_resolver)
        qs_sim_time = time.time() - qs_sim_start

        # kc_sim_start = time.time()
        # kc_sim_result = kc_sim.simulate(cirq_circuit, param_resolver=param_resolver)
        # kc_sim_time = time.time() - kc_sim_start

        # print("kc_sim_result.state_vector()=")
        # print(kc_sim_result.state_vector())
        # print("qs_sim_result.state_vector()=")
        # print(qs_sim_result.state_vector())

        # assert qs_sim_result.state_vector().shape == (1<<n,)
        # assert cirq.linalg.allclose_up_to_global_phase(
        #     sv_sim_result.state_vector(),
        #     qs_sim_result.state_vector(),
        #     rtol = 1.e-5,
        #     atol = 1.e-7,
        # )
        # assert cirq.linalg.allclose_up_to_global_phase(
        #     qs_sim_result.state_vector(),
        #     kc_sim_result.state_vector(),
        #     rtol = 1.e-4,
        #     atol = 1.e-6,
        # )

        # VALIDATE SAMPLING HISTOGRAMS

        # Sample bitstrings from circuit
        # sv_smp_start = time.time()
        # sv_smp_result = sv_sim.run(meas_circuit, param_resolver=param_resolver, repetitions=repetitions)
        # sv_smp_time = time.time() - sv_smp_start
        # sv_bitstrings = sv_smp_result.measurements['m']

        # Process histogram
        # sv_histogram = defaultdict(int)
        # for bitstring in sv_bitstrings:
        #     integer = 0
        #     for pos, bit in enumerate(reversed(bitstring)):
        #         integer += bit<<pos
        #     sv_histogram[integer] += 1

        # Process bitstrings
        # nonlocal sv_largest_cut_found
        # nonlocal sv_largest_cut_value_found
        # sv_values = cut_values(sv_bitstrings, graph)
        # sv_max_value_index = np.argmax(sv_values)
        # sv_max_value = sv_values[sv_max_value_index]
        # if sv_max_value > sv_largest_cut_value_found:
        #     sv_largest_cut_value_found = sv_max_value
        #     sv_largest_cut_found = sv_bitstrings[sv_max_value_index]
        # sv_mean = np.mean(sv_values)

        # Sample bitstrings from circuit
        qs_smp_01_start = time.time()
        qs_smp_01_result = qs_sim_01.run(meas_circuit,
                                         param_resolver=param_resolver,
                                         repetitions=repetitions)
        qs_smp_01_time = time.time() - qs_smp_01_start
        qs_smp_01_time_dict[n].append(qs_smp_01_time)

        # qs_smp_02_start = time.time()
        # qs_smp_02_result = qs_sim_02.run(qsim_circuit_02, repetitions=repetitions)
        # qs_smp_02_time = time.time() - qs_smp_02_start
        # qs_smp_02_time_dict[n].append(qs_smp_02_time)

        qs_smp_04_start = time.time()
        qs_smp_04_result = qs_sim_04.run(meas_circuit,
                                         param_resolver=param_resolver,
                                         repetitions=repetitions)
        qs_smp_04_time = time.time() - qs_smp_04_start
        qs_smp_04_time_dict[n].append(qs_smp_04_time)

        # qs_smp_08_start = time.time()
        # qs_smp_08_result = qs_sim_08.run(qsim_circuit_08, repetitions=repetitions)
        # qs_smp_08_time = time.time() - qs_smp_08_start
        # qs_smp_08_time_dict[n].append(qs_smp_08_time)

        qs_smp_16_start = time.time()
        qs_smp_16_result = qs_sim_16.run(meas_circuit,
                                         param_resolver=param_resolver,
                                         repetitions=repetitions)
        qs_smp_16_time = time.time() - qs_smp_16_start
        qs_smp_16_time_dict[n].append(qs_smp_16_time)

        qs_bitstrings = qs_smp_16_result.measurements['m']

        # Process histogram
        qs_histogram = defaultdict(int)
        # qs_bitstring_strs = []
        for bitstring in qs_bitstrings:
            integer = 0
            # string = ''
            for pos, bit in enumerate(bitstring):
                integer += bit << pos
                # string += str(bit)
            qs_histogram[integer] += 1
            # qs_bitstring_strs.append(string)

        # Process bitstrings
        nonlocal qs_largest_cut_found
        nonlocal qs_largest_cut_value_found
        qs_values = cut_values(
            np.array([np.flip(qs_bitstring)
                      for qs_bitstring in qs_bitstrings]), graph)
        qs_max_value_index = np.argmax(qs_values)
        qs_max_value = qs_values[qs_max_value_index]
        if qs_max_value > qs_largest_cut_value_found:
            qs_largest_cut_value_found = qs_max_value
            qs_largest_cut_found = qs_bitstrings[qs_max_value_index]
        qs_mean = np.mean(qs_values)

        # qh_smp_16_start = time.time()
        # qh_smp_16_result = qh_sim_16.compute_amplitudes(program=qsim_circuit, bitstrings=qs_bitstring_strs)
        # qh_smp_16_time = time.time() - qh_smp_16_start
        # qh_smp_16_time_dict[n].append(qh_smp_16_time)

        # Sample bitstrings from circuit
        kc_smp_start = time.time()
        kc_smp_result = kc_smp.run(meas_circuit,
                                   param_resolver=param_resolver,
                                   repetitions=repetitions)
        kc_smp_time = time.time() - kc_smp_start
        kc_smp_time_dict[n].append(kc_smp_time)

        # Process histogram
        kc_bitstrings = kc_smp_result.measurements['m']
        kc_histogram = defaultdict(int)
        for bitstring in kc_bitstrings:
            integer = 0
            for pos, bit in enumerate(reversed(bitstring)):
                integer += bit << pos
            kc_histogram[integer] += 1

        # Process bitstrings
        nonlocal kc_largest_cut_found
        nonlocal kc_largest_cut_value_found
        kc_values = cut_values(kc_bitstrings, graph)
        kc_max_value_index = np.argmax(kc_values)
        kc_max_value = kc_values[kc_max_value_index]
        if kc_max_value > kc_largest_cut_value_found:
            kc_largest_cut_value_found = kc_max_value
            kc_largest_cut_found = kc_bitstrings[kc_max_value_index]
        kc_mean = np.mean(kc_values)

        # nonlocal iter
        # PRINT HISTOGRAMS
        # print ('iter,index,bitstring,bitstring_bin,sv_probability,sv_samples,qs_samples,kc_samples')
        # probabilities = np.zeros(1<<n)
        # for bitstring, amplitude in enumerate(sv_sim_result.state_vector()):
        #     probability = abs(amplitude) * abs(amplitude)
        #     probabilities[bitstring]=probability
        # sorted_bitstrings = np.argsort(probabilities)
        # for index, bitstring in enumerate(sorted_bitstrings):
        #     print (str(iter)+','+str(index)+','+str(bitstring)+','+format(bitstring,'b').zfill(n)+','+str(probabilities[bitstring])+','+"{:.6e}".format(sv_histogram[bitstring]/repetitions)+','+"{:.6e}".format(qs_histogram[bitstring]/repetitions)+','+"{:.6e}".format(kc_histogram[bitstring]/repetitions))

        print('qs_mean=' + str(qs_mean) + ' kc_mean=' + str(kc_mean))
        # print ( 'sv_sim_time='+str(sv_sim_time)+' qs_sim_time='+str(qs_sim_time)+' kc_sim_time='+str(kc_sim_time) )
        print('qs_smp_01_time=' + str(qs_smp_01_time) + ' qs_smp_04_time=' +
              str(qs_smp_04_time) + ' qs_smp_16_time=' + str(qs_smp_16_time) +
              ' kc_smp_time=' + str(kc_smp_time))
        print(
            '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~')
        # iter += 1
        return -qs_mean
示例#9
0
def test_resolve_parameters():
    assert cirq.resolve_parameters(CExpZinGate(sympy.Symbol('a')),
        cirq.ParamResolver({'a': 0.5})) == CExpZinGate(0.5)

    assert cirq.resolve_parameters(CExpZinGate(0.25),
        cirq.ParamResolver({})) == CExpZinGate(0.25)