示例#1
0
def weatherUpdate():
    #twitter
    consumer_key = "dHSopVEhYTGEnuFSO9ZOfMGp1"
    consumer_secret = "FAKeb5sLWElP9dksT3kjJsKO0vHPtixGW4O1oHrqrrj40r93cN"
    access_token = "909114160713289728-Akb2JL4JrmXZLQqGwp1loZQAPhnvNER"
    access_token_secret = "PInMGr6YidbTR4acUoKDtslQt7ksubqsXFWQef5nxvO8L"

    #weather
    api_key = "577f692bda463ed51e5e7f3632a90604"
    url = "http://api.openweathermap.org/data/2.5/weather?"
    units = "imperial"

    #authorization
    auth = tweepy.OAuthHandler(consumer_key, consumer_secret)
    auth.set_access_token(access_token, access_token_secret)
    api = tweepy.API(auth, parser=tweepy.parsers.JSONParser())

    lat = np.random.uniform(low=-90.0, high=90.0)
    lng = np.random.uniform(low=-180.0, high=180.0)
    try:
        city = citipy.nearest_city(lat, lng)
        cityname = city.city_name
        countryname = city.country_code
        query_url = url + "appid=" + api_key + "&units=" + units + "&q=" + cityname + "," + countryname
        response = req.get(query_url).json()
        temperature = response["main"]["temp"]
        #time = datetime.now().strftime("%I:%M %p")
        api.update_status("The current temperature in %s, %s is %sF" %
                          (cityname, countryname, temperature))
        print("Successful tweet!")
    except:
        print("Skipping this one!")
示例#2
0
def WeatherTweet():
    coordinates = [(rand.randint(-90, 90), rand.randint(-180, 180))]
    for coordinate_pair in coordinates:
        lat, lon = coordinate_pair
        nearest_city_obj = (citipy.nearest_city(lat, lon))
        name = nearest_city_obj.city_name
    # Construct a Query URL
    url = "http://api.openweathermap.org/data/2.5/weather?"
    city = name
    units = "imperial"
    query_url = url + "appid=" + api_key + "&q=" + city + "&units=" + units

    # Perform the API
    weather_response = req.get(query_url)
    weather_json = weather_response.json()
    print(weather_json)

    # Twitter credentials
    auth = tweepy.OAuthHandler(consumer_key, consumer_secret)
    auth.set_access_token(access_token, access_token_secret)
    api = tweepy.API(auth, parser=tweepy.parsers.JSONParser())

    # Tweet the weather
    api.update_status(city + " Weather as of %s: %s F" %
                      (datetime.datetime.now().strftime("%I:%M %p"),
                       weather_json["main"]["temp"]))

    # Print success message
    print("Tweeted successfully, sir!")
示例#3
0
def generte_city_datarame():
    # Range of latitudes and longitudes
    lat_range = (-90, 90)
    lng_range = (-180, 180)

    # List for holding lat_lngs and cities
    lat_lngs = []
    cities = []

    weather_df = pd.DataFrame([])

    # Create a set of random lat and lng combinations
    lats = np.random.uniform(low=-90.000, high=90.000, size=1500)
    lngs = np.random.uniform(low=-180.000, high=180.000, size=1500)
    lat_lngs = zip(lats, lngs)

    # Identify nearest city for each lat, lng combination
    for lat_lng in lat_lngs:
        city = citipy.nearest_city(lat_lng[0], lat_lng[1]).city_name

        # If the city is unique, then add it to a our cities list
        if city not in cities:
            cities.append(city)
            weather_df = weather_df.append(pd.DataFrame(
                {
                    "City": city,
                    "latitude": lat_lng[0],
                    "longitude": lat_lng[1]
                },
                index=[0]),
                                           ignore_index=True)

    return weather_df
示例#4
0
def get_weather_data(coords, time_between=1):
    """ Queries openweather API for data.

    Args:
        coords: A Pandas Dataframe with rows containing 'latitude'
            and 'longitude' columns.
        time_between: An integer specifying the sleep time in seconds
            between each API ping. Defaults to the OpenWeatherAPI's
            recommended limit of 1 request per second.

    Returns:
        A list of nested dicts (loaded JSON results).
    """

    results = []
    for ind, row in coords.iterrows():
        lat, lon = row['latitude'], row['longitude']
        query = f"http://api.openweathermap.org/data/2.5/weather?lat={lat}&lon={lon}&units=imperial&appid={API_KEY}"
        print(query)
        clean_url = query.rpartition("&")[0]

        city = citipy.nearest_city(lat, lon)
        logger.info(f"Call {ind}: {city.city_name} {clean_url}")

        result = requests.get(query)
        results.append(result.json())
        time.sleep(time_between)
    return results
def makeCitiesList(country_coords):

    # Range of latitudes and longitudes for the set confines
    lat_range = (country_coords['lat'][0], country_coords['lat'][1])
    lng_range = (country_coords['lng'][0], country_coords['lng'][1])

    # List for holding lat_lngs and cities
    lat_lngs = []
    cities = []

    # Create a set of random lat and lng combinations
    lats = np.random.uniform(low=lat_range[0], high=lat_range[1], size=1500)
    lngs = np.random.uniform(low=lng_range[0], high=lng_range[1], size=1500)
    lat_lngs = zip(lats, lngs)

    # Identify nearest city for each lat, lng combination
    for lat_lng in lat_lngs:
        city = citipy.nearest_city(lat_lng[0], lat_lng[1]).city_name

        # If the city is unique, then add it to a our cities list
        if city not in cities:
            cities.append(city)

    # Print the city count to confirm sufficient count
    print(f'Cities in list : {len(cities)}')
    return (cities)
示例#6
0
def get_nearest_city(coordinate):
    # takes a coordinate pair and uses citipy to return the name of the nearest city
    lat = coordinate[0]
    lng = coordinate[1]

    city = citipy.nearest_city(lat, lng).city_name

    return city
示例#7
0
def generate_cities_list(num):
    city_list = []
    for i in range(num):
        random_latitude = random.randrange(-90, 90)
        random_longitude = random.randrange(-180, 180)
        city = citipy.nearest_city(random_latitude, random_longitude).city_name
        city_list.append(city)
    return city_list
示例#8
0
def citipyDistrict(df):
    latitude = df['latitude'].tolist()
    longitude = df['longitude'].tolist()
    district = []
    for i in range(len(latitude)):
        city = citipy.nearest_city(latitude[i], longitude[i])
        district.append(city.city_name)
    df['district'] = district
    pprint(df)
    return df
def get_city_coord(coordinates):
    cities = []
    city_coord = []
    # Identify the nearest city for each latitude and longitude combination.
    for coordinate in coordinates:
        city = citipy.nearest_city(coordinate[0], coordinate[1]).city_name

        # If the city is unique, then we will add it to the cities list.
        if city not in cities:
            cities.append(city)
            city_coord.append([city, coordinate[0], coordinate[1]])

    # Print the city count to confirm sufficient count.
    city_count = len(cities)
    print(f"valid city count is {city_count}")
    return city_coord
示例#10
0
def meteorites_data_retriever():
    #Fecth the meteorite landings data
    meteorite_landings_data = fetch_meteorite_landings_full_dataset()
    meteorite_data_df = meteorite_landings_data.copy()
    #Delete the columns
    meteorite_data_df = meteorite_data_df.drop(
        columns=":@computed_region_cbhk_fwbd")
    meteorite_data_df = meteorite_data_df.drop(
        columns=":@computed_region_nnqa_25f4")

    #Use np.nan instaed of . "" as empty
    meteorite_data_df["country_code"] = np.nan
    meteorite_data_df["country_name"] = np.nan
    meteorite_data_df["city_name"] = np.nan
    meteorite_data_df["continent_name"] = np.nan

    #find the country name from country code and update to data Frame
    country_mapping_df = pd.read_csv(
        "./Resources/country_continent_mapping.csv", encoding='latin1')

    # Loop through the meteorite_data_df and find city name and coutry code for a lat/long
    start_time = time.time()

    for row in meteorite_data_df.itertuples():
        try:
            latitude = float(row.reclat)
            longitude = float(row.reclong)

            city = citipy.nearest_city(latitude, longitude)
            city_name = city.city_name.capitalize()
            country_code = city.country_code.upper()
            meteorite_data_df["city_name"][row.Index] = city_name
            meteorite_data_df["country_code"][row.Index] = country_code
        except IndexError:
            print(
                f"Oops!  That was no valid number.  latitude:{latitude}, longitude:{longitude},city_name:{city_name} ,country_code:{country_code} ,  "
            )

    print("Process completed : It took --- %s minutes ---" %
          ((time.time() - start_time) / 60))
    meteorite_data_df.to_csv('./Resources/meteorites_landing_raw_data.csv')
    return meteorite_landings_data
示例#11
0
def Load_Random_Cities_Locations(lattitude_low, latitude_high):
    """
    Used to load random cities by generating samples of latitue and
    logitude values and finding nearby cities.  Uses the citypy module

    Parameters
    ----------
    lattitude_low : TYPE: int
        DESCRIPTION. Lowest latitude value to use in generating sample
    latitude_high : TYPE: int
        DESCRIPTION. Highest latitude value to use in generating sample

    Returns
    -------
    TYPE: DataFrame
        DESCRIPTION. random cities within bounded latitude range

    """
    # List for holding lat_lngs and cities
    lat_lngs = []
    cities = []
    # Create a set of random lat and lng combinations
    lats = np.random.uniform(low=lattitude_low, high=latitude_high, size=2000)
    lngs = np.random.uniform(low=-180.000, high=180.000, size=2000)
    lat_lngs = zip(lats, lngs)

    # Identify nearest city for each lat, lng combination
    for lat_lng in lat_lngs:
        city = citipy.nearest_city(lat_lng[0], lat_lng[1]).city_name

        # If the city is unique, then add it to a our cities list
        if city not in cities:
            cities.append(city)

    # Print the city count to confirm sufficient count
    print(len(cities))
    return pd.DataFrame(cities)
示例#12
0
cloudiness = []
wind_speed = []
cities = []
countries = []
units = 'imperial'
'''
generates lat and lon coordinates to two decimals and adds them to their respective lists
'''
for number in range(num_cities):
    lat.append(round(random.uniform(-90, 90), 2))
    lon.append(round(random.uniform(-180, 180), 2))
'''

'''
for number in range(num_cities):
    city = citipy.nearest_city(lat[number], lon[number])
    city_name = city.city_name
    country_code = city.country_code
    print(f'{number+1}. {city_name.upper()}, {country_code.upper()}')
    request_url = url + f'q={city_name},{country_code}&units={units}&appid={token}'
    request = requests.get(request_url).json()
    try:
        temp.append(request['main']['temp'])
        humidity.append(request["main"]['humidity'])
        cloudiness.append(request['clouds']['all'])
        wind_speed.append(request['wind']['speed'])
        cities.append(city_name)
        countries.append(country_code)
    except KeyError:
        print('Error')
        temp.append('')
示例#13
0
# create dupe checking set
cityDupeChecker = set()

# create counter
i = 0

# create a list of 1500 possible cities (so even if a query fails still have good sample)
while len(cityDupeChecker) < 1500:

    # set random lat and long
    latitude = rd.uniform(-90.0, 90.0)
    longitude = rd.uniform(-180.0, 180.0)

    # get city
    city = citipy.nearest_city(latitude, longitude).city_name
    country = citipy.nearest_city(latitude, longitude).country_code
    city_country_pair = f"{city}_{country}"

    if city_country_pair not in cityDupeChecker:
        cityDupeChecker.add(city_country_pair)

        # try to pull in a random value and add to dupe checker
        city_list.append([city, country])

# -----------------------------------------------------------------------------------
# Step 4: Pull city data from openweatherapi
# -----------------------------------------------------------------------------------
for i in range(len(city_list)):

    # get current city and country
示例#14
0
import random

#Set up lists to collect data
cities = []
temps = []
humid = []
wind = []
clouds = []
frames = []

#Randomly generate lat/lng and collect nearest city
for i in range(5):
    lat = numpy.random.uniform(low=-90.00000, high=90.000000, size = 60)
    lng = numpy.random.uniform(low=-120.00000, high=120.000000, size = 60)
    for j in range(60):
        query = citipy.nearest_city(lat[j], lng[j])
        #API request
        url = "api.openweathermap.org/data/2.5/weather?q=" + query + "&APPID=d77529b69cd743d50d241b93b6553ec5"
        response = req.get(url)
        print("Retrieving weather data for " + query)
        print(url)
        response_json = response.json()
        #Collect data from JSON 
        temperature.append(response_json["main"]["temp"])
        humidity.append(response_json["main"]["humidity"])
        wind.append(response_json["wind"]["speed"])
        clouds.append(response_json["clouds"]["all"])
        cities.append(query)
        df = pd.DataFrame(data = {"Cities": cities, "Latitude": lat[j], "Temperature": temps, "Humidity": humid, "Wind Speed": wind, "Cloud Cover": clouds)
        frames.append(df)
示例#15
0
        lon_samples = [y + dec_lon for dec_lon in lons]
        cities_df = cities_df.append(
            pd.DataFrame.from_dict({
                "Latitude": lat_samples,
                "Longitude": lon_samples
            }))
cities_df = cities_df.reset_index(drop=True)
cities_df.shape

# In[116]:

# For the selected coordinates, use citipy to associate them with nearest city.
cities_df["Closest City name"] = ""
cities_df["Closest Country code"] = ""
for index, row in cities_df.iterrows():
    city = citipy.nearest_city(row["Latitude"], row["Longitude"])
    cities_df.set_value(index, "Closest City name", city.city_name)
    cities_df.set_value(index, "Closest Country code", city.country_code)

# Drop random lat and lon samples from dataframe that don't match coordinates
clean_cities_df = cities_df.drop(['Latitude', 'Longitude'], axis=1)
clean_cities_df

# Drop duplicate cities
clean_cities_df = clean_cities_df.drop_duplicates()

# Pick a sample of 500 cities for analysis
select_cities = clean_cities_df.sample(500)
select_cities = select_cities.reset_index(drop=True)

# # Hello? OpenWeatherMap? You there?
lat_lngs = zip(lats, lngs)
lat_lngs

# %%
# Add the latitudes and longitudes to a list.
coordinates = list(lat_lngs)

# %%
from citipy import citipy

# %%
# Create a list for holding the cities.
cities = []
# Identify the nearest city for each latitude and longitude combination.
for coordinate in coordinates:
    city = citipy.nearest_city(coordinate[0], coordinate[1]).city_name

    # If the city is unique, then we will add it to the cities list.
    if city not in cities:
        cities.append(city)
# Print the city count to confirm sufficient count.
len(cities)

# %%
# Import the requests library.
import requests
from datetime import datetime

# %%
# Import the API key.
from config import weather_api_key
示例#17
0
文件: web.py 项目: fsinohui/web_hw
units = 'imperial'
query_url = url + "appid=" + api_key + "&units=" + units + "&q="

count = 0
lats = []
lngs = []

while count < 1200:
    lats.append(random.uniform(-90, 90))
    lngs.append(random.uniform(-180, 180))
    count = count + 1

cities = ['london']
countries = ['GB']
for lat, lng in zip(lats, lngs):
    cityid = citipy.nearest_city(lat, lng)
    city = cityid.city_name
    country = cityid.country_code
    cities.append(city)
    countries.append(country)

temp_data = []
lon_data = []
temp_data = []
lat_data = []
humidity_data = []
cloud_data = []
wind_data = []

for city in cities:
    weather_json = req.get(query_url + city).json()
示例#18
0
# define the range of latitudes and longitude and samplesize
lat_range = (-90, 90)
lng_range = (-180, 180)
samplesize = 1500

# Create the amount of cities based on the maxsize for each round
cities = []
i = 0
maxsize = 1000
while i < maxsize:
    lat_lngs, lats, lngs = randomcitycoor(lat_range, lng_range, samplesize,
                                          seed)

    for lat_lng in lat_lngs:
        citipy_obj = citipy.nearest_city(lat_lng[0], lat_lng[1])
        cityname = citipy_obj.city_name
        countryname = citipy_obj.country_code
        citypluscountry = cityname + ', ' + countryname
        # if citypluscountry not in cities:
        cities.append(citypluscountry)

    i = len(cities)
    seed = seed + 1
    print(i)

# trim down to the target size
len(cities)
cities = list(np.unique(cities))
len(cities)
cities
示例#19
0
import requests as req
from scipy.stats.stats import pearsonr
import time

API = "INSERT API KEY"
owm = pyowm.OWM(API)
url = "http://api.openweathermap.org/data/2.5/weather?q="
units = "&units=imperial"

#get cities from coordinates
cities = []

while len(cities) <= 1500:
    latitude = random.randint(-90.00, 90.00)
    longitude = random.randint(-180.00, 180.00)
    city = cp.nearest_city(latitude, longitude)
    if city not in cities:
        cities.append({
            'city code': city,
            'city': city.city_name,
            'country': city.country_code,
            'latitude': latitude,
            'longitude': longitude,
        })
    else:
        continue

#get weather info for each city
weatherInfo = {}
for x in cities:
    city = x['city']
示例#20
0
def get_city_weather_df(n_rows=10, force_new=False):
  cache_data_file_path = '.cache.csv'
  coords_df = None
  # see if there is a cache file to use
  try:
      coords_df = pd.read_csv(cache_data_file_path, index_col=0)
      print("Data loaded from cache")
  except OSError as err:
      print("No cache file found")

  # If no cache file was found or a new one is forced
  # generate the data
  if (coords_df is None or force_new):
      # Generate latitudes(-90 to 90) and longitudes(-180 to 180)
      # using random number generator and multiply by 100
      coords_df = pd.DataFrame({
          "Lng": np.random.uniform(-180, 180, n_rows), # -180 | 180
          "Lat": np.random.uniform(-90, 90, n_rows) # -90 | 90
      })

      # Now lets get the cities name and countries
      city_names = []
      country_codes = []
      temperature = []
      humidity = []
      cloudiness = []
      wind_speed = []
      date = []

      for i in range(0, len(coords_df['Lat'])):
          lat = coords_df.iloc[i]['Lat']
          lon = coords_df.iloc[i]["Lng"]

          # get the city data
          city = citipy.nearest_city(lat, lon)

          city_names.append(city.city_name)
          country_codes.append(city.country_code)

          # get the weather data
          weather = get_weather_by_coords(lat, lon)

          temperature.append(weather["main"]["temp_max"])
          humidity.append(weather["main"]["humidity"])
          cloudiness.append(weather["clouds"]["all"])
          wind_speed.append(weather["wind"]["speed"])
          date.append(weather["dt"])
      
      # add values to the DataFrame
      coords_df['City']=city_names
      coords_df['Country']=country_codes
      coords_df['Max Temp']=temperature
      coords_df['Humidity']=humidity
      coords_df['Cloudiness']=cloudiness
      coords_df['Wind Speed']=wind_speed
      coords_df['Date']=date

      # cache the file for later...
      coords_df.to_csv(cache_data_file_path)

  # lets peek at our data frame
  return coords_df
示例#21
0
api_key = '25bc90a1196e6f153eece0bc0b0fc9eb'
units = 'Imperial'
url = 'http://api.openweathermap.org/data/2.5/weather'


# In[97]:

#Cities Setup - random integers for latitude/longitude
cities_dict = {'city':[],'country':[]}


# In[98]:

#Build City Dictionary
for x in range(0,1500):
	x = cp.nearest_city(random.randint(-90,90), random.randint(-180,180))
	if x.city_name not in cities_dict['city']:
		cities_dict['city'].append(x.city_name)
		cities_dict['country'].append(x.country_code)


# In[99]:

#Check that code is working
for city in cities_dict['city']:
	print(city)

len(cities_dict['city'])


# In[100]:
示例#22
0
locs = dict(zip(lats,lngs))
#print(len(lats), len(lngs))
type(locs)


# In[82]:


#Uses Citipy to identify the nearest city with country code

locs_conv = []
weatherdata_df = pd.DataFrame(columns = ['City','Temp','Humidity','Clouds','Wind_Speed'])
response_data = []

for key,value in locs.items():
    city = citipy.nearest_city(key,value)
    locs_conv.append(city)

#locs_conv
city_counter = 0
print('Beginning Data Retrieval')
print('-----------------------------')
for location in locs_conv:
    print('Processing record '+str(city_counter)+' of '+ str(len(locs_conv))+"|"+location.city_name)
    city_counter +=1
    
    try:
        params = {
            'appid': api_key,
            'units': units,
            'q': location.city_name+","+location.country_code
示例#23
0
import requests as req
import json
import pandas as pd
from citipy import citipy
import matplotlib.pyplot as plt

lat = []
n = [0, 1, 2, 3, 4, 5]

for row in n:
    # lat.append(row)
    # print("lat:" + str(row))
    city = citipy.nearest_city(row, 101)
    lat.append(city.city_name)
# # print(lat)

url = 'http://api.openweathermap.org/data/2.5/weather/'
api_key = "00e1e179e7275d087f40c8b9313ae8a8"
params = {'appid': api_key, 'q': '', 'units': 'metric'}
weather_data = []
lat_data = []
temp_data = []
# cities = ['Chennai', 'Berkeley', 'Chicago']

for city in lat:
    params['q'] = city
    response = req.get(url, params=params).json()
    weather_data.append(response)
print(weather_data)
for data in weather_data:
    lat_data.append(data['coord']['lat'])
示例#24
0
def get_nearest_city(coor):
    city = citipy.nearest_city(coor['Latitude'], coor['Longitude'])
    return city.city_name + ',' + city.country_code
示例#25
0
weatherList = []
Lat = []
temp = []
humid = []
cloud=[]
windSpeed=[]
#find cities


with open('weatherReport.csv', 'w') as csvfile:
    dataWriter = csv.writer(csvfile, delimiter=',')
    dataWriter.writerow(['City','Country','Latitude','Longitude','Temperature','Humidity','Cloudiness','WindSpeed','URL'])
    cityCounter = 0
    for lat in LatList:
        for lon in LonList:
            city = citipy.nearest_city(lat,lon)
            City=city.city_name
            Country=city.country_code
            CityCountrySTR= "{0},{1}".format(City,Country)
            if CityCountrySTR not in CityCountry:
                CityCountry.append(CityCountrySTR)
                URL="http://api.openweathermap.org/data/2.5/weather?q={0}&appid=4cc2a844092656dedc2d4db74f22bdb6".format(CityCountrySTR)
                # print(CityCountrySTR)
                r = requests.get(URL)
                data = r.json()
                if data['cod']==200:
                    weatherList.append(data)
                    Lat.append(data['coord']['lat'])
                    temp.append(data['main']['temp']*(9/5) - 459.67) #Kelvin to Fahrenheit
                    humid.append(data['main']['humidity'])
                    cloud.append(data['clouds']['all'])
# List for holding lat_lngs and cities
lat_lngs = []
new_lats = []
new_longs = []
cities = []
countries = []
temp = []
# Create a set of random lat and lng combinations
lats = np.random.uniform(low=-90.000, high=90.000, size=1500)
lngs = np.random.uniform(low=-180.000, high=180.000, size=1500)
lat_lngs = zip(lats, lngs)

# Identify nearest city for each lat, lng combination
for lat_lng in lat_lngs:
    city = citipy.nearest_city(lat_lng[0], lat_lng[1]).city_name
    country = citipy.nearest_city(lat_lng[0], lat_lng[1]).country_code
    #countries.append(country)
    # If the city is unique, then add it to a our cities list
   #if country not in countries:
     #   countries.append(country)
    if city not in cities:
        cities.append(city)
        countries.append(country)
        new_lats.append(lat_lng[0])
        new_longs.append(lat_lng[1])
   # Print the city count to confirm sufficient count

print(len(cities))
print(len(countries))
print(len(new_lats))
示例#27
0
# #city = cp.nearest_city(22.99, 120.21)

# #Yako, bf
# #city = cp.nearest_city(12.95, -2.26)

# #Wellington,?
# #city = cp.nearest_city(-41.28, 174.77)

# #San Francisco, CA, USA
# #city = cp.nearest_city(37.77, -122.43)

# #Sacramento, CA, USA
# #city = cp.nearest_city(38.58, -121.48)

# San Ramon, CA, USA
city = cp.nearest_city(37.80,-121.98)


print(city.city_name)     
print(city.country_code)            

# #----------------------------------------------------

# #Test: random.uniform coordinates and city lookup

# from citipy import citipy as cp
# from random import uniform

# # Testing one geo coordinate pair
# x,y = uniform(-90, 90),uniform(-180,-90) 
# print(x)
示例#28
0
lat_lngs = []
cities = []

# Create a set of random lat and lng combinations
lats = np.random.uniform(low=-90.000, high=90.000, size=1500)
lngs = np.random.uniform(low=-180.000, high=180.000, size=1500)
# lat_lngs = zip(lats, lngs)

#*************************************
coordinates = list(zip(lats, lngs))
cities = []
countries = []

for coordinate_pair in coordinates:
    lat, lon = coordinate_pair
    city = citipy.nearest_city(lat, lon).city_name
    country = citipy.nearest_city(lat, lon).country_code
    cities.append(city)
    countries.append(country)
Cities_data = pd.DataFrame({"City": cities, "Country": countries})

# Drop any duplicate values
Cities_data = Cities_data.drop_duplicates('City')

# Visualize the data frame
Cities_data.head()

# ## Generate Cities List

# In[230]:
示例#29
0
lng_range = (-180, 180)

# In[3]:

# List for holding lat_lngs and cities
lat_lngs = []
cities = []

# Create a set of random lat and lng combinations
lats = np.random.uniform(lat_range[0], lat_range[1], size=1500)
lngs = np.random.uniform(lng_range[0], lng_range[1], size=1500)
lat_lngs = zip(lats, lngs)

# Identify nearest city for each lat, lng combination
for lat_lng in lat_lngs:
    city = citipy.nearest_city(lat_lng[0], lat_lng[1]).city_name

    # If the city is unique, then add it to a our cities list
    if city not in cities:
        cities.append(city)

# Print the city count to confirm sufficient count
len(cities)

# In[4]:

#Lists to be filled with values
url = "http://api.openweathermap.org/data/2.5/weather?units=Imperial&APPID=" + weather_api_key
diffcity = []
Lat = []
Lng = []
import time
from scipy.stats import linregress
# %%
# generate 1500 random latitude and longitude data as a list of tuples
lats = np.random.uniform(-90.0, 90.0, size=1500)
lngs = np.random.uniform(-180.0, 180.0, size=1500)

lats_lngs = zip(lats, lngs)
coordinates = list(lats_lngs)
print(coordinates[:11])

# %%
# use citipy module to get nearest city names
cities = list()
for coor in coordinates:
    cities_name = citipy.nearest_city(coor[0], coor[1]).city_name
    # ensure no any duplicate cities
    if cities_name not in cities:
        cities.append(cities_name)
print(cities[:10], 'Generate', len(cities))

# %%
# use OpenWeather API to request, get, parse JSON to retrieve weather data for each city.

# initial counters for log and sets
record_count = 1
set_count = 1

city_data = list()
basic_url = "http://api.openweathermap.org/data/2.5/weather?units=imperial&APPID=" + weather_api_key