示例#1
0
def create_env(building_uids, **kwargs):

    data_folder = Path("data/")
    demand_file = data_folder / "AustinResidential_TH.csv"
    weather_file = data_folder / 'Austin_Airp_TX-hour.csv'

    max_action_val = kwargs["max_action_val"]
    min_action_val = kwargs["min_action_val"]
    target_cooling = kwargs["target_cooling"]

    heat_pump, heat_tank, cooling_tank = {}, {}, {}

    loss_coeff, efficiency = 0.19 / 24, 1.

    # Ref: Assessment of energy efficiency in electric storage water heaters (2008 Energy and Buildings)
    buildings = []
    for uid in building_uids:
        heat_pump[uid] = HeatPump(nominal_power=9e12,
                                  eta_tech=0.22,
                                  t_target_heating=45,
                                  t_target_cooling=target_cooling)
        heat_tank[uid] = EnergyStorage(capacity=9e12, loss_coeff=loss_coeff)
        cooling_tank[uid] = EnergyStorage(capacity=9e12, loss_coeff=loss_coeff)
        buildings.append(
            Building(uid,
                     heating_storage=heat_tank[uid],
                     cooling_storage=cooling_tank[uid],
                     heating_device=heat_pump[uid],
                     cooling_device=heat_pump[uid],
                     sub_building_uids=[uid]))
        buildings[-1].state_space(np.array([24.0, 40.0, 1.001]),
                                  np.array([1.0, 17.0, -0.001]))
        buildings[-1].action_space(np.array([max_action_val]),
                                   np.array([min_action_val]))

    building_loader(demand_file, weather_file, buildings)
    auto_size(buildings, t_target_heating=45, t_target_cooling=target_cooling)

    env = CityLearn(demand_file,
                    weather_file,
                    buildings=buildings,
                    time_resolution=1,
                    simulation_period=(kwargs["start_time"] - 1,
                                       kwargs["end_time"]))

    return env, buildings, heat_pump, heat_tank, cooling_tank
示例#2
0
weather_file = data_path / 'weather_data.csv'
solar_profile = data_path / 'solar_generation_1kW.csv'
building_state_actions = 'buildings_state_action_space.json'
building_ids = [
    "Building_1", "Building_2", "Building_3", "Building_4", "Building_5",
    "Building_6", "Building_7", "Building_8", "Building_9"
]
objective_function = [
    'ramping', '1-load_factor', 'average_daily_peak', 'peak_demand',
    'net_electricity_consumption'
]

env = CityLearn(data_path,
                building_attributes,
                weather_file,
                solar_profile,
                building_ids,
                buildings_states_actions=building_state_actions,
                cost_function=objective_function)
observations_spaces, actions_spaces = env.get_state_action_spaces()

# Provides information on Building type, Climate Zone, Annual DHW demand, Annual Cooling Demand, Annual Electricity Demand, Solar Capacity, and correllations among buildings
building_info = env.get_building_information()

# RL CONTROLLER
#Instantiating the control agent(s)
agents = Agent(env, building_info, observations_spaces, actions_spaces)

# Select many episodes for training. In the final run we will set this value to 1 (the buildings run for one year)
episodes = 10
示例#3
0
                              cooling_storage=cooling_tank[uid],
                              heating_device=heat_pump[uid],
                              cooling_device=heat_pump[uid])
    buildings[uid].state_action_space(np.array([24.0, 40.0, 1.001]),
                                      np.array([1.0, 17.0, -0.001]),
                                      np.array([0.5]), np.array([-0.5]))

building_loader(demand_file, weather_file, buildings)

auto_size(buildings, t_target_heating=45, t_target_cooling=10)

env = {}
for uid in building_ids:
    env[uid] = CityLearn(demand_file,
                         weather_file,
                         buildings={uid: buildings[uid]},
                         time_resolution=1,
                         simulation_period=(3500, 6000))
    env[uid](uid)

if __name__ == "__main__":
    N_AGENTS = 2
    GAMMA = 0.99
    BATCH_SIZE = 5000
    LEARNING_RATE_ACTOR = 1e-4
    LEARNING_RATE_CRITIC = 1e-3
    REPLAY_SIZE = 5000
    REPLAY_INITIAL = 100
    TEST_ITERS = 120
    EPSILON_DECAY_LAST_FRAME = 1000
    EPSILON_START = 1.2
示例#4
0
data_path = Path("data/Climate_Zone_" + str(climate_zone))
building_attributes = data_path / 'building_attributes.json'
weather_file = data_path / 'weather_data.csv'
solar_profile = data_path / 'solar_generation_1kW.csv'
building_state_actions = 'buildings_state_action_space.json'
#building_ids = ["Building_1","Building_2","Building_3","Building_4","Building_5","Building_6","Building_7","Building_8","Building_9"]
building_ids = ["Building_1"]
objective_function = [
    'ramping', '1-load_factor', 'average_daily_peak', 'peak_demand',
    'net_electricity_consumption'
]
env = CityLearn(data_path,
                building_attributes,
                weather_file,
                solar_profile,
                building_ids,
                buildings_states_actions=building_state_actions,
                cost_function=objective_function,
                central_agent=True,
                verbose=1)

# Contain the lower and upper bounds of the states and actions, to be provided to the agent to normalize the variables between 0 and 1.
# Can be obtained using observations_spaces[i].low or .high
observations_spaces, actions_spaces = env.get_state_action_spaces()

# Provides information on Building type, Climate Zone, Annual DHW demand, Annual Cooling Demand, Annual Electricity Demand, Solar Capacity, and correllations among buildings
building_info = env.get_building_information()

# In[ ]:

tf.compat.v1.reset_default_graph()
示例#5
0
# Load environment
climate_zone = 1
data_path = Path("data/Climate_Zone_" + str(climate_zone))
building_attributes = data_path / 'building_attributes.json'
weather_file = data_path / 'weather_data.csv'
solar_profile = data_path / 'solar_generation_1kW.csv'
#building_state_actions = 'buildings_state_action_space_full.json'
building_state_actions = 'buildings_state_action_space_central_full.json'
building_id = ["Building_1","Building_2","Building_3","Building_4","Building_5","Building_6","Building_7","Building_8","Building_9"]
#building_id = ["Building_1","Building_2"]
objective_function = ['ramping', '1-load_factor', 'average_daily_peak', 'peak_demand', 'net_electricity_consumption']

# Contain the lower and upper bounds of the states and actions, to be provided to the agent to normalize the variables between 0 and 1.
# Can be obtained using observations_spaces[i].low or .high
env = CityLearn(data_path, building_attributes, weather_file, solar_profile, building_id,
                buildings_states_actions=building_state_actions, cost_function=objective_function, verbose=0,
                central_agent=True, simulation_period=(0, 8760 - 1))
#observations_spaces, actions_spaces = env.get_state_action_spaces()

observations_spaces = env.observation_space
actions_spaces = env.action_space

torch.manual_seed(args.seed)
random.seed(args.seed)
np.random.seed(args.seed)
env.seed(args.seed)

# Provides information on Building type, Climate Zone, Annual DHW demand, Annual Cooling Demand, Annual Electricity Demand, Solar Capacity, and correllations among buildings
building_info = env.get_building_information()
#print(building_info)
示例#6
0
data_path = Path("data/Climate_Zone_" + str(climate_zone))
building_attributes = data_path / 'building_attributes.json'
weather_file = data_path / 'weather_data.csv'
solar_profile = data_path / 'solar_generation_1kW.csv'
building_state_actions = 'buildings_state_action_space.json'
# building_ids = ['Building_1',"Building_2","Building_3","Building_4","Building_5","Building_6","Building_7","Building_8","Building_9"]
building_ids = ['Building_1', 'Building_2']
objective_function = [
    'ramping', '1-load_factor', 'average_daily_peak', 'peak_demand',
    'net_electricity_consumption'
]
env = CityLearn(data_path,
                building_attributes,
                weather_file,
                solar_profile,
                building_ids,
                buildings_states_actions=building_state_actions,
                cost_function=objective_function,
                central_agent=True,
                verbose=1)

# Store the weights and scores in a new directory
parent_dir = "alg/ddpg_{}/".format(
    time.strftime("%Y%m%d-%H%M%S"))  # apprends the timedate
os.makedirs(parent_dir, exist_ok=True)

# Create log dir
log_dir = parent_dir + "monitor"
os.makedirs(log_dir, exist_ok=True)

# Set the interval and their count
示例#7
0
data_path = Path("data/Climate_Zone_" + str(climate_zone))
building_attributes = data_path / 'building_attributes.json'
weather_file = data_path / 'weather_data.csv'
solar_profile = data_path / 'solar_generation_1kW.csv'
building_state_actions = 'buildings_state_action_space.json'
#building_ids = ["Building_1","Building_2","Building_3","Building_4","Building_5","Building_6","Building_7","Building_8","Building_9"]
building_ids = ["Building_1"]
objective_function = [
    'ramping', '1-load_factor', 'average_daily_peak', 'peak_demand',
    'net_electricity_consumption'
]
env = CityLearn(data_path,
                building_attributes,
                weather_file,
                solar_profile,
                building_ids,
                buildings_states_actions=building_state_actions,
                cost_function=objective_function,
                central_agent=False,
                verbose=0)

# Contain the lower and upper bounds of the states and actions, to be provided to the agent to normalize the variables between 0 and 1.
# Can be obtained using observations_spaces[i].low or .high
observations_spaces, actions_spaces = env.get_state_action_spaces()

# Provides information on Building type, Climate Zone, Annual DHW demand, Annual Cooling Demand, Annual Electricity Demand, Solar Capacity, and correllations among buildings
building_info = env.get_building_information()

# In[ ]:
"""
###################################
示例#8
0
文件: main.py 项目: jie-jay/CityLearn
    ["Building_" + str(i) for i in [1, 2, 3, 4, 5, 6, 7, 8, 9]],
    'buildings_states_actions':
    'buildings_state_action_space.json',
    'simulation_period': (0, 8760 * 4 - 1),
    'cost_function': [
        'ramping', '1-load_factor', 'average_daily_peak', 'peak_demand',
        'net_electricity_consumption', 'carbon_emissions'
    ],
    'central_agent':
    False,
    'save_memory':
    False
}

# Contain the lower and upper bounds of the states and actions, to be provided to the agent to normalize the variables between 0 and 1.
env = CityLearn(**params)
observations_spaces, actions_spaces = env.get_state_action_spaces()

# Provides information on Building type, Climate Zone, Annual DHW demand, Annual Cooling Demand, Annual Electricity Demand, Solar Capacity, and correllations among buildings
building_info = env.get_building_information()

params_agent = {
    'building_ids':
    ["Building_" + str(i) for i in [1, 2, 3, 4, 5, 6, 7, 8, 9]],
    'buildings_states_actions': 'buildings_state_action_space.json',
    'building_info': building_info,
    'observation_spaces': observations_spaces,
    'action_spaces': actions_spaces
}

# Instantiating the control agent(s)
示例#9
0
import numpy as np

# Load environment
data_folder = Path("data/")
building_attributes = data_folder / 'building_attributes.json'
solar_profile = data_folder / 'solar_generation_1kW.csv'
building_state_actions = 'buildings_state_action_space.json'
building_ids = [
    "Building_1", "Building_2", "Building_3", "Building_4", "Building_5",
    "Building_6", "Building_7", "Building_8", "Building_9"
]

env = CityLearn(building_attributes,
                solar_profile,
                building_ids,
                buildings_states_actions=building_state_actions,
                cost_function=[
                    'ramping', '1-load_factor', 'peak_to_valley_ratio',
                    'peak_demand', 'net_electricity_consumption', 'quadratic'
                ])
observations_spaces, actions_spaces = env.get_state_action_spaces()

# Provides information on Building type, Climate Zone, Annual DHW demand, Annual Cooling Demand, Annual Electricity Demand, Solar Capacity, and correllations among buildings
building_info = env.get_building_information()

# RL CONTROLLER
#Instantiating the control agent(s)
agents = RL_Agents(building_info, observations_spaces, actions_spaces)
episodes = 300

k, c = 0, 0
cost, cum_reward = {}, {}
示例#10
0
def run(config):
    data_folder = Path(config.data_path)
    building_attributes = data_folder / 'building_attributes.json'
    solar_profile = data_folder / 'solar_generation_1kW.csv'
    building_state_actions = 'buildings_state_action_space.json'
    # building_ids = ["Building_" + str(i) for i in range(1, config.num_buildings + 1)]
    config.num_buildings = 6

    # customized log directory
    hidden = config.hidden_dim
    lr = config.lr
    tau = config.tau
    gamma = config.gamma
    batch_size = config.batch_size
    buffer_length = config.buffer_length
    to_print = lambda x: str(x)
    log_path = "log"+"_hidden"+to_print(hidden)+"_lr"+to_print(lr)+"_tau"+to_print(tau)+"_gamma"+to_print(gamma)+\
                "_batch_size"+to_print(batch_size)+"_buffer_length"+to_print(buffer_length)+"_TIME_PERIOD_1008_MAXACTION_25"+"/"

    logger = SummaryWriter(log_dir=log_path)
    # TODO fix here
    building_ids = ["Building_" + str(i)
                    for i in [1, 2, 5, 6, 7, 8]]  #[1,2,5,6,7,8]
    env = CityLearn(building_attributes,
                    solar_profile,
                    building_ids,
                    buildings_states_actions=building_state_actions,
                    cost_function=[
                        'ramping', '1-load_factor', 'peak_to_valley_ratio',
                        'peak_demand', 'net_electricity_consumption'
                    ])
    observations_spaces, actions_spaces = env.get_state_action_spaces()

    # Instantiating the control agent(s)
    if config.agent_alg == 'MADDPG':
        agents = MA_DDPG(observations_spaces,
                         actions_spaces,
                         hyper_params=vars(config))
    else:
        raise NotImplementedError

    k, c = 0, 0
    cost, cum_reward = {}, {}
    buffer = ReplayBuffer(max_steps=config.buffer_length,
                          num_agents=config.num_buildings,
                          obs_dims=[s.shape[0] for s in observations_spaces],
                          ac_dims=[a.shape[0] for a in actions_spaces])
    # TODO: store np or tensor in buffer?
    start = time.time()
    for e in range(config.n_episodes):
        cum_reward[e] = 0
        rewards = []
        state = env.reset()
        statecast = lambda x: [torch.FloatTensor(s) for s in x]
        done = False
        ss = 0
        while not done:
            if k % (40000 * 4) == 0:
                print('hour: ' + str(k) + ' of ' +
                      str(TIME_PERIOD * config.n_episodes))
            action = agents.select_action(statecast(state), explore=False)
            action = [a.detach().numpy() for a in action]
            # if batch norm:
            action = [np.squeeze(a, axis=0) for a in action]
            ss += 1
            #print("action is ", action)
            #print(action[0].shape)
            #raise NotImplementedError
            next_state, reward, done, _ = env.step(action)
            reward = reward_function(
                reward)  # See comments in reward_function.py
            #buffer_reward = [-r for r in reward]
            # agents.add_to_buffer()
            buffer.push(statecast(state), action, reward,
                        statecast(next_state), done)
            # if (len(buffer) >= config.batch_size and
            #         (e % config.steps_per_update) < config.n_rollout_threads):
            if len(buffer) >= config.batch_size:
                if USE_CUDA:
                    agents.to_train(device='gpu')
                else:
                    agents.to_train(device='cpu')
                for a_i in range(agents.n_buildings):
                    sample = buffer.sample(config.batch_size, to_gpu=USE_CUDA)
                    agents.update(sample,
                                  a_i,
                                  logger=logger,
                                  global_step=e * TIME_PERIOD + ss)
            logger.add_scalar(tag='net electric consumption',
                              scalar_value=env.net_electric_consumption[-1],
                              global_step=e * TIME_PERIOD + ss)
            logger.add_scalar(tag='env cost total',
                              scalar_value=env.cost()['total'],
                              global_step=e * TIME_PERIOD + ss)
            logger.add_scalar(tag="1 load factor",
                              scalar_value=env.cost()['1-load_factor'],
                              global_step=e * TIME_PERIOD + ss)
            logger.add_scalar(tag="peak to valley ratio",
                              scalar_value=env.cost()['peak_to_valley_ratio'],
                              global_step=e * TIME_PERIOD + ss)
            logger.add_scalar(tag="peak demand",
                              scalar_value=env.cost()['peak_demand'],
                              global_step=e * TIME_PERIOD + ss)
            logger.add_scalar(
                tag="net energy consumption",
                scalar_value=env.cost()['net_electricity_consumption'],
                global_step=e * TIME_PERIOD + ss)
            net_energy_consumption_wo_storage = env.net_electric_consumption[
                -1] + env.electric_generation[
                    -1] - env.electric_consumption_cooling_storage[
                        -1] - env.electric_consumption_dhw_storage[-1]
            logger.add_scalar(tag="net energy consumption without storage",
                              scalar_value=net_energy_consumption_wo_storage,
                              global_step=e * TIME_PERIOD + ss)

            for id, r in enumerate(reward):
                logger.add_scalar(tag="agent {} reward ".format(id),
                                  scalar_value=r,
                                  global_step=e * TIME_PERIOD + ss)

            state = next_state
            cum_reward[e] += reward[0]
            k += 1
            cur_time = time.time()
            # print("average time : {}s/iteration at iteration {}".format((cur_time - start) / (60.0 * k), k))
        cost[e] = env.cost()
        if c % 1 == 0:
            print(cost[e])
        # add env total cost and reward logger
        logger.add_scalar(tag='env cost total final',
                          scalar_value=env.cost()['total'],
                          global_step=e)
        logger.add_scalar(tag="1 load factor final",
                          scalar_value=env.cost()['1-load_factor'],
                          global_step=e)
        logger.add_scalar(tag="peak to valley ratio final",
                          scalar_value=env.cost()['peak_to_valley_ratio'],
                          global_step=e)
        logger.add_scalar(tag="peak demand final",
                          scalar_value=env.cost()['peak_demand'],
                          global_step=e)
        logger.add_scalar(
            tag="net energy consumption final",
            scalar_value=env.cost()['net_electricity_consumption'],
            global_step=e)
        net_energy_consumption_wo_storage = env.net_electric_consumption[
            -1] + env.electric_generation[
                -1] - env.electric_consumption_cooling_storage[
                    -1] - env.electric_consumption_dhw_storage[-1]
        logger.add_scalar(tag="net energy consumption without storage",
                          scalar_value=net_energy_consumption_wo_storage,
                          global_step=e)
        c += 1
        rewards.append(reward)

    end = time.time()
    print((end - start) / 60.0)
示例#11
0
building_id = [
    "Building_1", "Building_2", "Building_3", "Building_4", "Building_5",
    "Building_6", "Building_7", "Building_8", "Building_9"
]
objective_function = [
    'ramping', '1-load_factor', 'average_daily_peak', 'peak_demand',
    'net_electricity_consumption'
]

# Contain the lower and upper bounds of the states and actions, to be provided to the agent to normalize the variables between 0 and 1.
# Can be obtained using observations_spaces[i].low or .high
env = CityLearn(data_path,
                building_attributes,
                weather_file,
                solar_profile,
                building_id,
                buildings_states_actions=building_state_actions,
                cost_function=objective_function,
                verbose=0,
                simulation_period=(0, 8760 - 1))
observations_spaces, actions_spaces = env.get_state_action_spaces()

# Provides information on Building type, Climate Zone, Annual DHW demand, Annual Cooling Demand, Annual Electricity Demand, Solar Capacity, and correllations among buildings
building_info = env.get_building_information()

# Hyperparameters
bs = 256
tau = 0.005
gamma = 0.99
lr = 0.0003
hid = [128, 128]
示例#12
0
weather_file = data_path / 'weather_data.csv'
solar_profile = data_path / 'solar_generation_1kW.csv'
building_state_actions = 'buildings_state_action_space.json'
building_ids = [
    'Building_1', "Building_2", "Building_3", "Building_4", "Building_5",
    "Building_6", "Building_7", "Building_8", "Building_9"
]
objective_function = [
    'ramping', '1-load_factor', 'average_daily_peak', 'peak_demand',
    'net_electricity_consumption'
]
env = CityLearn(data_path,
                building_attributes,
                weather_file,
                solar_profile,
                building_ids,
                buildings_states_actions=building_state_actions,
                cost_function=objective_function,
                simulation_period=(3624, 5832),
                central_agent=False,
                verbose=0)
RBC_env = CityLearn(data_path,
                    building_attributes,
                    weather_file,
                    solar_profile,
                    building_ids,
                    buildings_states_actions=building_state_actions,
                    cost_function=objective_function,
                    simulation_period=(3624, 5832),
                    central_agent=False,
                    normalise=True,
                    verbose=0)
示例#13
0
from torch.utils.tensorboard import writer

# Ignore the float32 bound precision warning
warnings.simplefilter("ignore", UserWarning)

# Central agent controlling the buildings using the OpenAI Stable Baselines
climate_zone = 1
data_path = Path("data/Climate_Zone_"+str(climate_zone))
building_attributes = data_path / 'building_attributes.json'
weather_file = data_path / 'weather_data.csv'
solar_profile = data_path / 'solar_generation_1kW.csv'
building_state_actions = 'buildings_state_action_space.json'
building_ids = ['Building_1',"Building_2","Building_3","Building_4","Building_5","Building_6","Building_7","Building_8","Building_9"]
# building_ids = ['Building_1', 'Building_2']
objective_function = ['ramping','1-load_factor','average_daily_peak','peak_demand','net_electricity_consumption']
env = CityLearn(data_path, building_attributes, weather_file, solar_profile, building_ids, buildings_states_actions = building_state_actions,
                cost_function = objective_function, central_agent = True, verbose = 1)

# Store the weights and scores in a new directory
parent_dir = "alg/sac_{}/".format(time.strftime("%Y%m%d-%H%M%S")) # apprends the timedate
os.makedirs(parent_dir, exist_ok=True)

# Create log dir
log_dir = parent_dir+"monitor"
os.makedirs(log_dir, exist_ok=True)

# Set the interval and their count
interval = 8760
icount = int(sys.argv[1]) if len(sys.argv) > 1 else 10
log_interval = 1
check_interval = 1
示例#14
0
# Autoencoder parameters
NEW_STATE_SIZE = 8
AE_EPOCHS = 5000

# Environment
# Central agent controlling the buildings using the OpenAI Stable Baselines
climate_zone = 1
data_path = Path("data/Climate_Zone_"+str(climate_zone))
building_attributes = data_path / 'building_attributes.json'
weather_file = data_path / 'weather_data.csv'
solar_profile = data_path / 'solar_generation_1kW.csv'
building_state_actions = 'buildings_state_action_space.json'
building_ids = ['Building_1',"Building_2","Building_3","Building_4","Building_5","Building_6","Building_7","Building_8","Building_9"]
# building_ids = ['Building_3']
objective_function = ['ramping','1-load_factor','average_daily_peak','peak_demand','net_electricity_consumption']
env = CityLearn(data_path, building_attributes, weather_file, solar_profile, building_ids, buildings_states_actions = building_state_actions, cost_function = objective_function, central_agent = True, verbose = 0)
RBC_env = CityLearn(data_path, building_attributes, weather_file, solar_profile, building_ids, buildings_states_actions = building_state_actions, cost_function = objective_function, central_agent = False, verbose = 0)

# Contain the lower and upper bounds of the states and actions, to be provided to the agent to normalize the variables between 0 and 1.
# Can be obtained using observations_spaces[i].low or .high
observations_spaces, actions_spaces = env.get_state_action_spaces()
observations_spacesRBC, actions_spacesRBC = RBC_env.get_state_action_spaces()

# Provides information on Building type, Climate Zone, Annual DHW demand, Annual Cooling Demand, Annual Electricity Demand, Solar Capacity, and correllations among buildings
building_info = env.get_building_information()

"""
#############################################
STEP 2: Determine the size of the Action and State Spaces and the Number of Agents

The observation space consists of various variables corresponding to the 
示例#15
0
building_attributes = data_path / 'building_attributes.json'
weather_file = data_path / 'weather_data.csv'
solar_profile = data_path / 'solar_generation_1kW.csv'
building_state_actions = 'buildings_state_action_space.json'
building_ids = [
    "Building_1", "Building_2", "Building_3", "Building_4", "Building_5",
    "Building_6", "Building_7", "Building_8", "Building_9"
]
objective_function = [
    'ramping', '1-load_factor', 'average_daily_peak', 'peak_demand',
    'net_electricity_consumption'
]
env = CityLearn(data_path,
                building_attributes,
                weather_file,
                solar_profile,
                building_ids,
                buildings_states_actions=building_state_actions,
                cost_function=objective_function,
                central_agent=True)

# Contain the lower and upper bounds of the states and actions, to be provided to the agent to normalize the variables between 0 and 1.
# Can be obtained using observations_spaces[i].low or .high
observations_spaces, actions_spaces = env.get_state_action_spaces()

# Provides information on Building type, Climate Zone, Annual DHW demand, Annual Cooling Demand, Annual Electricity Demand, Solar Capacity, and correllations among buildings
building_info = env.get_building_information()

# Store the weights and scores in a new directory
parent_dir = "alg/sac_{}/".format(
    time.strftime("%Y%m%d-%H%M%S"))  # apprends the timedate
os.makedirs(parent_dir, exist_ok=True)