def simple_plot(_G, _path): # plot using the selected extents plot.plot_nX(_G, labels=False, plot_geoms=True, node_size=10, edge_width=1, x_lim=(min_x, max_x), y_lim=(min_y, max_y), dpi=200, path=_path)
def simple_plot(_G, _path=None, plot_geoms=True): # manual ax for plotting additional circles util_funcs.plt_setup() # create new plot fig, target_ax = plt.subplots(1, 1) plot.plot_nX(_G, labels=False, plot_geoms=plot_geoms, node_size=10, edge_width=1, x_lim=(min_x, max_x), y_lim=(min_y, max_y), ax=target_ax) if _path is not None: plt.savefig(_path, facecolor='#2e2e2e') else: return target_ax
import numpy as np import osmnx as ox import utm from matplotlib import colors from shapely import geometry from cityseer.metrics import networks, layers from cityseer.tools import mock, graphs, plot base_path = os.getcwd() plt.style.use('matplotlibrc') ### # INTRO PLOT G = mock.mock_graph() plot.plot_nX(G, labels=True, node_size=80, path='images/graph.png', dpi=150) # INTRO EXAMPLE PLOTS G = graphs.nX_simple_geoms(G) G = graphs.nX_decompose(G, 20) N = networks.NetworkLayerFromNX(G, distances=[400, 800]) N.segment_centrality(measures=['segment_harmonic']) data_dict = mock.mock_data_dict(G, random_seed=25) D = layers.DataLayerFromDict(data_dict) D.assign_to_network(N, max_dist=400) landuse_labels = mock.mock_categorical_data(len(data_dict), random_seed=25) D.hill_branch_wt_diversity(landuse_labels, qs=[0]) G_metrics = N.to_networkX()
import utm from matplotlib import colors import matplotlib.pyplot as plt from cityseer.metrics import networks, layers from cityseer.tools import mock, graphs, plot from src import util_funcs util_funcs.plt_setup() # INTRO PLOT G = mock.mock_graph() plot.plot_nX(G, labels=True, node_size=80, path='../phd-doc/doc/images/cityseer/graph.pdf') # INTRO EXAMPLE PLOTS G = graphs.nX_simple_geoms(G) G = graphs.nX_decompose(G, 20) N = networks.NetworkLayerFromNX(G, distances=[400, 800]) N.segment_centrality(measures=['segment_harmonic']) data_dict = mock.mock_data_dict(G, random_seed=25) D = layers.DataLayerFromDict(data_dict) D.assign_to_network(N, max_dist=400) landuse_labels = mock.mock_categorical_data(len(data_dict), random_seed=25) D.hill_branch_wt_diversity(landuse_labels, qs=[0])