def make_test_listings(): """ Create a DataFrame with some data. Contains 3 listings: row 0: contains realistic data; rows 1, 2 contain mainly None, nan. """ from clair.dataframes import make_listing_frame fr = make_listing_frame(3) #All listings need unique ids fr["id"] = ["eb-123", "eb-456", "eb-457"] fr.ix[0, "training_sample"] = True fr.ix[0, "search_tasks"] = ["s-nikon-d90"] # fr.ix[0, "query_string"] = "Nikon D90" fr.set_value(0, "expected_products", ["nikon-d90", "nikon-sb-24"]) fr.ix[0, "products"] = ["nikon-d90"] fr.ix[0, "products_absent"] = ["nikon-sb-24"] fr.ix[0, "thumbnail"] = "www.some.site/dir/to/thumb.pg" fr.ix[0, "image"] = "www.some.site/dir/to/img.pg" fr["title"] = [u"Nikon D90 super duper!", u"<>müäh", None] fr.ix[0, "description"] = "Buy my old Nikon D90 camera <b>now</b>!" fr.set_value(0, "prod_spec", {"Marke":"Nikon", "Modell":"D90"}) fr.ix[0, "active"] = False fr.ix[0, "sold"] = False fr.ix[0, "currency"] = "EUR" fr.ix[0, "price"] = 400. fr.ix[0, "shipping"] = 12. fr.ix[0, "type"] = "auction" fr["time"] = [datetime(2013,1,10), datetime(2013,2,2), datetime(2013,2,3)] fr.ix[0, "location"] = u"Köln" fr.ix[0, "postcode"] = u"50667" fr.ix[0, "country"] = "DE" fr.ix[0, "condition"] = 0.7 fr.ix[0, "server"] = "Ebay-Germany" fr.ix[0, "server_id"] = "123" #ID of listing on server fr.ix[0, "final_price"] = True # fr["data_directory"] = "" fr.ix[0, "url_webui"] = "www.some.site/dir/to/web-page.html" # fr.ix[0, "server_repr"] = nan #Put our IDs into index fr.set_index("id", drop=False, inplace=True, verify_integrity=True) # print fr return fr
def test_make_listing_frame(): print "Start" from clair.dataframes import make_listing_frame lf = make_listing_frame(10) assert len(lf.index) == 10