示例#1
0
def project(XK, XV, LorY, surfSrc, surfTar, K_diag, V_diag, IorE, self, param,
            ind0, timing, kernel):

    if param.GPU == 1:
        tic = cuda.Event()
        toc = cuda.Event()
    else:
        tic = Event()
        toc = Event()

    REAL = param.REAL
    Ns = len(surfSrc.triangle)
    Nt = len(surfTar.triangle)
    L = numpy.sqrt(2 * surfSrc.Area)  # Representative length

    tic.record()
    K = param.K
    w = getWeights(K)
    X_V = numpy.zeros(Ns * K)
    X_Kx = numpy.zeros(Ns * K)
    X_Ky = numpy.zeros(Ns * K)
    X_Kz = numpy.zeros(Ns * K)
    X_Kc = numpy.zeros(Ns * K)
    X_Vc = numpy.zeros(Ns * K)

    NsK = numpy.arange(Ns * K)
    X_V[:] = XV[NsK / K] * w[NsK % K] * surfSrc.Area[NsK / K]
    X_Kx[:] = XK[NsK / K] * w[NsK % K] * surfSrc.Area[NsK /
                                                      K] * surfSrc.normal[NsK /
                                                                          K, 0]
    X_Ky[:] = XK[NsK / K] * w[NsK % K] * surfSrc.Area[NsK /
                                                      K] * surfSrc.normal[NsK /
                                                                          K, 1]
    X_Kz[:] = XK[NsK / K] * w[NsK % K] * surfSrc.Area[NsK /
                                                      K] * surfSrc.normal[NsK /
                                                                          K, 2]
    X_Kc[:] = XK[NsK / K]
    X_Vc[:] = XV[NsK / K]

    toc.record()
    toc.synchronize()
    timing.time_mass += tic.time_till(toc) * 1e-3

    tic.record()
    C = 0
    getMultipole(surfSrc.tree, C, surfSrc.xj, surfSrc.yj, surfSrc.zj, X_V,
                 X_Kx, X_Ky, X_Kz, ind0, param.P, param.NCRIT)
    toc.record()
    toc.synchronize()
    timing.time_P2M += tic.time_till(toc) * 1e-3

    tic.record()
    for C in reversed(range(1, len(surfSrc.tree))):
        PC = surfSrc.tree[C].parent
        upwardSweep(surfSrc.tree, C, PC, param.P, ind0.II, ind0.JJ, ind0.KK,
                    ind0.index, ind0.combII, ind0.combJJ, ind0.combKK,
                    ind0.IImii, ind0.JJmjj, ind0.KKmkk, ind0.index_small,
                    ind0.index_ptr)
    toc.record()
    toc.synchronize()
    timing.time_M2M += tic.time_till(toc) * 1e-3

    tic.record()
    X_V = X_V[surfSrc.sortSource]
    X_Kx = X_Kx[surfSrc.sortSource]
    X_Ky = X_Ky[surfSrc.sortSource]
    X_Kz = X_Kz[surfSrc.sortSource]
    X_Kc = X_Kc[surfSrc.sortSource]
    X_Vc = X_Vc[surfSrc.sortSource]
    toc.record()
    toc.synchronize()
    timing.time_sort += tic.time_till(toc) * 1e-3

    param.Nround = len(surfTar.twig) * param.NCRIT
    K_aux = numpy.zeros(param.Nround)
    V_aux = numpy.zeros(param.Nround)
    AI_int = 0

    ### CPU code
    if param.GPU == 0:
        K_aux, V_aux = M2P_sort(surfSrc, surfTar, K_aux, V_aux, self,
                                ind0.index_large, param, LorY, timing)

        K_aux, V_aux = P2P_sort(surfSrc, surfTar, X_V, X_Kx, X_Ky, X_Kz, X_Kc,
                                X_Vc, K_aux, V_aux, self, LorY, K_diag, V_diag,
                                IorE, L, w, param, timing)

    ### GPU code
    elif param.GPU == 1:
        K_gpu = cuda.to_device(K_aux.astype(REAL))
        V_gpu = cuda.to_device(V_aux.astype(REAL))

        if surfTar.offsetMlt[self, len(surfTar.twig)] > 0:
            K_gpu, V_gpu = M2P_gpu(surfSrc, surfTar, K_gpu, V_gpu, self, ind0,
                                   param, LorY, timing, kernel)

        K_gpu, V_gpu = P2P_gpu(surfSrc, surfTar, X_V, X_Kx, X_Ky, X_Kz, X_Kc,
                               X_Vc, K_gpu, V_gpu, self, LorY, K_diag, IorE, L,
                               w, param, timing, kernel)

        tic.record()
        K_aux = cuda.from_device(K_gpu, len(K_aux), dtype=REAL)
        V_aux = cuda.from_device(V_gpu, len(V_aux), dtype=REAL)
        toc.record()
        toc.synchronize()
        timing.time_trans += tic.time_till(toc) * 1e-3

    tic.record()
    K_lyr = K_aux[surfTar.unsort]
    V_lyr = V_aux[surfTar.unsort]
    toc.record()
    toc.synchronize()
    timing.time_sort += tic.time_till(toc) * 1e-3

    return K_lyr, V_lyr
示例#2
0
def project(XK, XV, LorY, surfSrc, surfTar, K_diag, V_diag, IorE,
            self, param, ind0, timing, kernel):

    if param.GPU==1:
        tic = cuda.Event()
        toc = cuda.Event()
    else:
        tic = Event()
        toc = Event()

    REAL = param.REAL
    Ns = len(surfSrc.triangle)
    Nt = len(surfTar.triangle)
    L = numpy.sqrt(2*surfSrc.Area) # Representative length

    tic.record()
    K = param.K
    w = getWeights(K)
    X_V  = numpy.zeros(Ns*K)
    X_Kx = numpy.zeros(Ns*K)
    X_Ky = numpy.zeros(Ns*K)
    X_Kz = numpy.zeros(Ns*K)
    X_Kc = numpy.zeros(Ns*K)
    X_Vc = numpy.zeros(Ns*K)

    NsK = numpy.arange(Ns*K)
    X_V[:]  = XV[NsK/K]*w[NsK%K]*surfSrc.Area[NsK/K]
    X_Kx[:] = XK[NsK/K]*w[NsK%K]*surfSrc.Area[NsK/K]*surfSrc.normal[NsK/K,0]
    X_Ky[:] = XK[NsK/K]*w[NsK%K]*surfSrc.Area[NsK/K]*surfSrc.normal[NsK/K,1]
    X_Kz[:] = XK[NsK/K]*w[NsK%K]*surfSrc.Area[NsK/K]*surfSrc.normal[NsK/K,2]
    X_Kc[:] = XK[NsK/K]
    X_Vc[:] = XV[NsK/K]

    toc.record()
    toc.synchronize()
    timing.time_mass += tic.time_till(toc)*1e-3

    tic.record()
    C = 0
    getMultipole(surfSrc.tree, C, surfSrc.xj, surfSrc.yj, surfSrc.zj, 
                    X_V, X_Kx, X_Ky, X_Kz, ind0, param.P, param.NCRIT)
    toc.record()
    toc.synchronize()
    timing.time_P2M += tic.time_till(toc)*1e-3


    tic.record()
    for C in reversed(range(1,len(surfSrc.tree))):
        PC = surfSrc.tree[C].parent
        upwardSweep(surfSrc.tree, C, PC, param.P, ind0.II, ind0.JJ, ind0.KK, ind0.index, ind0.combII, ind0.combJJ, 
                    ind0.combKK, ind0.IImii, ind0.JJmjj, ind0.KKmkk, ind0.index_small, ind0.index_ptr)
    toc.record()
    toc.synchronize()
    timing.time_M2M += tic.time_till(toc)*1e-3

    tic.record()
    X_V = X_V[surfSrc.sortSource]
    X_Kx = X_Kx[surfSrc.sortSource]
    X_Ky = X_Ky[surfSrc.sortSource]
    X_Kz = X_Kz[surfSrc.sortSource]
    X_Kc = X_Kc[surfSrc.sortSource]
    X_Vc = X_Vc[surfSrc.sortSource]
    toc.record()
    toc.synchronize()
    timing.time_sort += tic.time_till(toc)*1e-3

    param.Nround = len(surfTar.twig)*param.NCRIT
    K_aux  = numpy.zeros(param.Nround)
    V_aux  = numpy.zeros(param.Nround)
    AI_int = 0

    ### CPU code
    if param.GPU==0:
        K_aux, V_aux = M2P_sort(surfSrc, surfTar, K_aux, V_aux, self, 
                                ind0.index_large, param, LorY, timing)

        K_aux, V_aux = P2P_sort(surfSrc, surfTar, X_V, X_Kx, X_Ky, X_Kz, X_Kc, X_Vc, 
                                K_aux, V_aux, self, LorY, K_diag, V_diag, IorE, L, w, param, timing)

    ### GPU code
    elif param.GPU==1:
        K_gpu = cuda.to_device(K_aux.astype(REAL))
        V_gpu = cuda.to_device(V_aux.astype(REAL))

        if surfTar.offsetMlt[self,len(surfTar.twig)]>0:
            K_gpu, V_gpu = M2P_gpu(surfSrc, surfTar, K_gpu, V_gpu, self, 
                                    ind0, param, LorY, timing, kernel)

        K_gpu, V_gpu = P2P_gpu(surfSrc, surfTar, X_V, X_Kx, X_Ky, X_Kz, X_Kc, X_Vc, 
                                K_gpu, V_gpu, self, LorY, K_diag, IorE, L, w, param, timing, kernel)

        tic.record()
        K_aux = cuda.from_device(K_gpu, len(K_aux), dtype=REAL)
        V_aux = cuda.from_device(V_gpu, len(V_aux), dtype=REAL)
        toc.record()
        toc.synchronize()
        timing.time_trans += tic.time_till(toc)*1e-3

    tic.record()
    K_lyr = K_aux[surfTar.unsort]
    V_lyr = V_aux[surfTar.unsort]
    toc.record()
    toc.synchronize()
    timing.time_sort += tic.time_till(toc)*1e-3

    return K_lyr, V_lyr 
示例#3
0
def project_Kt(XKt, LorY, surfSrc, surfTar, Kt_diag, self, param, ind0, timing,
               kernel):

    if param.GPU == 1:
        tic = cuda.Event()
        toc = cuda.Event()
    else:
        tic = Event()
        toc = Event()

    REAL = param.REAL
    Ns = len(surfSrc.triangle)
    Nt = len(surfTar.triangle)
    L = numpy.sqrt(2 * surfSrc.Area)  # Representative length

    tic.record()
    K = param.K
    w = getWeights(K)
    X_Kt = numpy.zeros(Ns * K)
    X_Ktc = numpy.zeros(Ns * K)

    NsK = numpy.arange(Ns * K)
    X_Kt[:] = XKt[NsK / K] * w[NsK % K] * surfSrc.Area[NsK / K]
    X_Ktc[:] = XKt[NsK / K]

    toc.record()
    toc.synchronize()
    timing.time_mass += tic.time_till(toc) * 1e-3

    tic.record()
    C = 0
    X_aux = numpy.zeros(Ns * K)
    getMultipole(surfSrc.tree, C, surfSrc.xj, surfSrc.yj, surfSrc.zj, X_Kt,
                 X_aux, X_aux, X_aux, ind0, param.P, param.NCRIT)
    toc.record()
    toc.synchronize()
    timing.time_P2M += tic.time_till(toc) * 1e-3

    tic.record()
    for C in reversed(range(1, len(surfSrc.tree))):
        PC = surfSrc.tree[C].parent
        upwardSweep(surfSrc.tree, C, PC, param.P, ind0.II, ind0.JJ, ind0.KK,
                    ind0.index, ind0.combII, ind0.combJJ, ind0.combKK,
                    ind0.IImii, ind0.JJmjj, ind0.KKmkk, ind0.index_small,
                    ind0.index_ptr)
    toc.record()
    toc.synchronize()
    timing.time_M2M += tic.time_till(toc) * 1e-3

    tic.record()
    X_Kt = X_Kt[surfSrc.sortSource]
    X_Ktc = X_Ktc[surfSrc.sortSource]
    toc.record()
    toc.synchronize()
    timing.time_sort += tic.time_till(toc) * 1e-3

    param.Nround = len(surfTar.twig) * param.NCRIT
    Ktx_aux = numpy.zeros(param.Nround)
    Kty_aux = numpy.zeros(param.Nround)
    Ktz_aux = numpy.zeros(param.Nround)
    AI_int = 0

    ### CPU code
    if param.GPU == 0:
        if surfTar.offsetMlt[self, len(surfTar.twig)] > 0:
            Ktx_aux, Kty_aux, Ktz_aux = M2PKt_sort(surfSrc, surfTar, Ktx_aux,
                                                   Kty_aux, Ktz_aux, self,
                                                   ind0.index_large, param,
                                                   LorY, timing)

        Ktx_aux, Kty_aux, Ktz_aux = P2PKt_sort(surfSrc, surfTar, X_Kt, X_Ktc,
                                               Ktx_aux, Kty_aux, Ktz_aux, self,
                                               LorY, w, param, timing)

    ### GPU code
    elif param.GPU == 1:
        Ktx_gpu = cuda.to_device(Ktx_aux.astype(REAL))
        Kty_gpu = cuda.to_device(Kty_aux.astype(REAL))
        Ktz_gpu = cuda.to_device(Ktz_aux.astype(REAL))

        if surfTar.offsetMlt[self, len(surfTar.twig)] > 0:
            Ktx_gpu, Kty_gpu, Ktz_gpu = M2PKt_gpu(surfSrc, surfTar, Ktx_gpu,
                                                  Kty_gpu, Ktz_gpu, self, ind0,
                                                  param, LorY, timing, kernel)

        Ktx_gpu, Kty_gpu, Ktz_gpu = P2PKt_gpu(surfSrc, surfTar, X_Kt, X_Ktc,
                                              Ktx_gpu, Kty_gpu, Ktz_gpu, self,
                                              LorY, w, param, timing, kernel)

        tic.record()
        Ktx_aux = cuda.from_device(Ktx_gpu, len(Ktx_aux), dtype=REAL)
        Kty_aux = cuda.from_device(Kty_gpu, len(Kty_aux), dtype=REAL)
        Ktz_aux = cuda.from_device(Ktz_gpu, len(Ktz_aux), dtype=REAL)
        toc.record()
        toc.synchronize()
        timing.time_trans += tic.time_till(toc) * 1e-3

    tic.record()
    Kt_lyr = Ktx_aux[surfTar.unsort]*surfTar.normal[:,0] \
           + Kty_aux[surfTar.unsort]*surfTar.normal[:,1] \
           + Ktz_aux[surfTar.unsort]*surfTar.normal[:,2]

    if abs(Kt_diag) > 1e-12:  # if same surface
        Kt_lyr += Kt_diag * XKt

    toc.record()
    toc.synchronize()
    timing.time_sort += tic.time_till(toc) * 1e-3

    return Kt_lyr
示例#4
0
def project_Kt(XKt, LorY, surfSrc, surfTar, Kt_diag,
                self, param, ind0, timing, kernel):

    if param.GPU==1:
        tic = cuda.Event()
        toc = cuda.Event()
    else:
        tic = Event()
        toc = Event()

    REAL = param.REAL
    Ns = len(surfSrc.triangle)
    Nt = len(surfTar.triangle)
    L = numpy.sqrt(2*surfSrc.Area) # Representative length

    tic.record()
    K = param.K
    w    = getWeights(K)
    X_Kt = numpy.zeros(Ns*K)
    X_Ktc = numpy.zeros(Ns*K)

    NsK = numpy.arange(Ns*K)
    X_Kt[:]  = XKt[NsK/K]*w[NsK%K]*surfSrc.Area[NsK/K]
    X_Ktc[:] = XKt[NsK/K]

    toc.record()
    toc.synchronize()
    timing.time_mass += tic.time_till(toc)*1e-3

    tic.record()
    C = 0
    X_aux = numpy.zeros(Ns*K)
    getMultipole(surfSrc.tree, C, surfSrc.xj, surfSrc.yj, surfSrc.zj, 
                    X_Kt, X_aux, X_aux, X_aux, ind0, param.P, param.NCRIT)
    toc.record()
    toc.synchronize()
    timing.time_P2M += tic.time_till(toc)*1e-3


    tic.record()
    for C in reversed(range(1,len(surfSrc.tree))):
        PC = surfSrc.tree[C].parent
        upwardSweep(surfSrc.tree, C, PC, param.P, ind0.II, ind0.JJ, ind0.KK, ind0.index, ind0.combII, ind0.combJJ, 
                    ind0.combKK, ind0.IImii, ind0.JJmjj, ind0.KKmkk, ind0.index_small, ind0.index_ptr)
    toc.record()
    toc.synchronize()
    timing.time_M2M += tic.time_till(toc)*1e-3

    tic.record()
    X_Kt = X_Kt[surfSrc.sortSource]
    X_Ktc = X_Ktc[surfSrc.sortSource]
    toc.record()
    toc.synchronize()
    timing.time_sort += tic.time_till(toc)*1e-3

    param.Nround = len(surfTar.twig)*param.NCRIT
    Ktx_aux  = numpy.zeros(param.Nround)
    Kty_aux  = numpy.zeros(param.Nround)
    Ktz_aux  = numpy.zeros(param.Nround)
    AI_int = 0

    ### CPU code
    if param.GPU==0:
        if surfTar.offsetMlt[self,len(surfTar.twig)]>0:
            Ktx_aux, Kty_aux, Ktz_aux = M2PKt_sort(surfSrc, surfTar, Ktx_aux, Kty_aux, Ktz_aux, self, 
                                    ind0.index_large, param, LorY, timing)

        Ktx_aux, Kty_aux, Ktz_aux = P2PKt_sort(surfSrc, surfTar, X_Kt, X_Ktc, 
                            Ktx_aux, Kty_aux, Ktz_aux, self, LorY, w, param, timing)

    ### GPU code
    elif param.GPU==1:
        Ktx_gpu = cuda.to_device(Ktx_aux.astype(REAL))
        Kty_gpu = cuda.to_device(Kty_aux.astype(REAL))
        Ktz_gpu = cuda.to_device(Ktz_aux.astype(REAL))

        if surfTar.offsetMlt[self,len(surfTar.twig)]>0:
            Ktx_gpu, Kty_gpu, Ktz_gpu = M2PKt_gpu(surfSrc, surfTar, 
                                    Ktx_gpu, Kty_gpu, Ktz_gpu, self, 
                                    ind0, param, LorY, timing, kernel)

        Ktx_gpu, Kty_gpu, Ktz_gpu = P2PKt_gpu(surfSrc, surfTar, X_Kt, X_Ktc, Ktx_gpu, Kty_gpu, Ktz_gpu, 
                                self, LorY, w, param, timing, kernel)

        tic.record()
        Ktx_aux = cuda.from_device(Ktx_gpu, len(Ktx_aux), dtype=REAL)
        Kty_aux = cuda.from_device(Kty_gpu, len(Kty_aux), dtype=REAL)
        Ktz_aux = cuda.from_device(Ktz_gpu, len(Ktz_aux), dtype=REAL)
        toc.record()
        toc.synchronize()
        timing.time_trans += tic.time_till(toc)*1e-3

    tic.record()
    Kt_lyr = Ktx_aux[surfTar.unsort]*surfTar.normal[:,0] \
           + Kty_aux[surfTar.unsort]*surfTar.normal[:,1] \
           + Ktz_aux[surfTar.unsort]*surfTar.normal[:,2] 

    if abs(Kt_diag)>1e-12: # if same surface
        Kt_lyr += Kt_diag * XKt

    toc.record()
    toc.synchronize()
    timing.time_sort += tic.time_till(toc)*1e-3

    return Kt_lyr