f.write('lr: {0}\n'.format(hp.lr)) f.write('lr_scheduler_step_size: {0}\n'.format( hp.lr_scheduler_step_size)) f.write('max_epoch: {0}\n'.format(hp.max_epoch)) if hp.optimizer != 'sgdr': f.write('lr_gamma: {0}\n'.format(hp.lr_gamma)) else: f.write('sgdr_T_mult: {0}\n'.format(hp.sgdr_T_mult)) f.write('lr_sgd_momentum: {0}\n'.format(hp.lr_sgd_momentum)) f.write('lr_weight_decay: {0}\n'.format(hp.lr_weight_decay)) f.write('bn_momentum: {0}\n'.format(hp.bn_momentum)) f.write('bn_gamma: {0}\n'.format(hp.bn_gamma)) f.write('bn_clip: {0}\n'.format(hp.bn_clip)) f.write('bn_step_size: {0}\n'.format(hp.bn_step_size)) f.write('optimizer: {0}\n'.format(hp.optimizer)) f.write('net: {0}\n'.format(hp.net)) f.write('grid_size: {0}\n'.format(hp.grid_size)) f.write('time_step: {0}\n'.format(hp.time_step)) f.write('pic_flip: {0}\n'.format(hp.pic_flip)) f.write('sigma: {0}\n'.format(hp.sigma)) f.write('manual_seed: {0}\n'.format(hp.manual_seed)) f.write('device: {0}\n'.format(hp.device)) f.write('batch_size: {0}\n'.format(hp.batch_size)) f.write('drop_rate: {0}\n'.format(hp.drop_rate)) f.write('label_smooth: {0}\n'.format(hp.label_smooth)) f.write('penalty: {0}\n'.format(hp.penalty)) f.write('oversampling: {0}\n'.format(hp.oversampling)) f.write('batch_norm: {0}\n'.format(hp.batch_norm)) trainer.train()
"mobileData?access_token=QCOI7AjXi7Is90f9hK0BQsOQuKxoU2ISnBa9HLt6Bmsg0nvQbOqPAbELCzTsl2ww" sensorUrl = "http://sensing-ms-api.mybluemix.net/api/Patients/0/" \ "sensorData?access_token=QCOI7AjXi7Is90f9hK0BQsOQuKxoU2ISnBa9HLt6Bmsg0nvQbOqPAbELCzTsl2ww" featuresNames = ["heartrate", "temperature", "steps", "activity"] allFeaturesNames = [ "heartrate_std", "heartrate_max", "heartrate_avg", "heartrate_min", "temperature_std", "temperature_max", "temperature_avg", "temperature_min", "steps", "activity_score", "activity_minutes" ] mobileData = getData(mobileUrl) sensorData = getData(sensorUrl) groups = groupData(mobileData, sensorData) features, labels = extractFeatures(groups, featuresNames) clf = Classifier() clf.train(features, labels) rules = clf.getDangerousRules(allFeaturesNames) print rules maxSeconds = 1 seconds = maxSeconds previousSensorData = None while True: if seconds > 0: print "\nWaiting for "+str(seconds)+" seconds." sleep(1) seconds -= 1 else: print "\nStarting again..." latestSensorData = getLatestSensorData(sensorUrl) if previousSensorData is None or latestSensorData["datetime"] != previousSensorData["datetime"]: previousSensorData = latestSensorData
mobileUrl = "http://sensing-ms-api.mybluemix.net/api/Patients/0/" \ "mobileData?access_token=QCOI7AjXi7Is90f9hK0BQsOQuKxoU2ISnBa9HLt6Bmsg0nvQbOqPAbELCzTsl2ww" sensorUrl = "http://sensing-ms-api.mybluemix.net/api/Patients/0/" \ "sensorData?access_token=QCOI7AjXi7Is90f9hK0BQsOQuKxoU2ISnBa9HLt6Bmsg0nvQbOqPAbELCzTsl2ww" featuresNames = ["heartrate", "temperature", "steps", "activity"] allFeaturesNames = [ "heartrate_std", "heartrate_max", "heartrate_avg", "heartrate_min", "temperature_std", "temperature_max", "temperature_avg", "temperature_min", "steps", "activity_score", "activity_minutes" ] mobileData = getData(mobileUrl) sensorData = getData(sensorUrl) groups = groupData(mobileData, sensorData) features, labels = extractFeatures(groups, featuresNames) clf = Classifier() clf.train(features, labels) rules = clf.getDangerousRules(allFeaturesNames) print rules maxSeconds = 1 seconds = maxSeconds previousSensorData = None while True: if seconds > 0: print "\nWaiting for " + str(seconds) + " seconds." sleep(1) seconds -= 1 else: print "\nStarting again..." latestSensorData = getLatestSensorData(sensorUrl) if previousSensorData is None or latestSensorData[ "datetime"] != previousSensorData["datetime"]: