def ChannelSE(reduction=16, **kwargs):
    """
    Squeeze and Excitation block, reimplementation inspired by
        https://github.com/Cadene/pretrained-models.pytorch/blob/master/pretrainedmodels/models/senet.py

    Args:
        reduction: channels squeeze factor

    """
    backend, layers, models, keras_utils = get_submodules_from_kwargs(kwargs)
    channels_axis = 3 if backend.image_data_format() == 'channels_last' else 1

    def layer(input_tensor):
        # get number of channels/filters
        channels = backend.int_shape(input_tensor)[channels_axis]

        x = input_tensor

        # squeeze and excitation block in PyTorch style with
        x = layers.GlobalAveragePooling2D()(x)
        x = layers.Lambda(expand_dims,
                          arguments={'channels_axis': channels_axis})(x)
        x = layers.Conv2D(channels // reduction, (1, 1),
                          kernel_initializer='he_uniform')(x)
        x = layers.Activation('relu')(x)
        x = layers.Conv2D(channels, (1, 1), kernel_initializer='he_uniform')(x)
        x = layers.Activation('sigmoid')(x)

        # apply attention
        x = layers.Multiply()([input_tensor, x])

        return x

    return layer
示例#2
0
def GroupConv2D(filters,
                kernel_size,
                strides=(1, 1),
                groups=32,
                kernel_initializer='he_uniform',
                use_bias=True,
                activation='linear',
                padding='valid',
                **kwargs):
    """
    Grouped Convolution Layer implemented as a Slice,
    Conv2D and Concatenate layers. Split filters to groups, apply Conv2D and concatenate back.
    Args:
        filters: Integer, the dimensionality of the output space
            (i.e. the number of output filters in the convolution).
        kernel_size: An integer or tuple/list of a single integer,
            specifying the length of the 1D convolution window.
        strides: An integer or tuple/list of a single integer, specifying the stride
            length of the convolution.
        groups: Integer, number of groups to split input filters to.
        kernel_initializer: Regularizer function applied to the kernel weights matrix.
        use_bias: Boolean, whether the layer uses a bias vector.
        activation: Activation function to use (see activations).
            If you don't specify anything, no activation is applied (ie. "linear" activation: a(x) = x).
        padding: one of "valid" or "same" (case-insensitive).
    Input shape:
        4D tensor with shape: (batch, rows, cols, channels) if data_format is "channels_last".
    Output shape:
        4D tensor with shape: (batch, new_rows, new_cols, filters) if data_format is "channels_last".
        rows and cols values might have changed due to padding.
    """

    backend, layers, models, keras_utils = get_submodules_from_kwargs(kwargs)
    slice_axis = 3 if backend.image_data_format() == 'channels_last' else 1

    def layer(input_tensor):
        inp_ch = int(backend.int_shape(input_tensor)[-1] // groups)  # input grouped channels
        out_ch = int(filters // groups)  # output grouped channels

        blocks = []
        for c in range(groups):
            slice_arguments = {
                'start': c * inp_ch,
                'stop': (c + 1) * inp_ch,
                'axis': slice_axis,
            }
            x = layers.Lambda(slice_tensor, arguments=slice_arguments)(input_tensor)
            x = layers.Conv2D(out_ch,
                              kernel_size,
                              strides=strides,
                              kernel_initializer=kernel_initializer,
                              use_bias=use_bias,
                              activation=activation,
                              padding=padding)(x)
            blocks.append(x)

        x = layers.Concatenate(axis=slice_axis)(blocks)
        return x

    return layer
示例#3
0
def SENet(
        model_params,
        input_tensor=None,
        input_shape=None,
        include_top=True,
        classes=1000,
        weights='imagenet',
        **kwargs
):
    """Instantiates the ResNet, SEResNet architecture.
    Optionally loads weights pre-trained on ImageNet.
    Note that the data format convention used by the model is
    the one specified in your Keras config at `~/.keras/keras.json`.

    Args:
        include_top: whether to include the fully-connected
            layer at the top of the network.
        weights: one of `None` (random initialization),
              'imagenet' (pre-training on ImageNet),
              or the path to the weights file to be loaded.
        input_tensor: optional Keras tensor
            (i.e. output of `layers.Input()`)
            to use as image input for the model.
        input_shape: optional shape tuple, only to be specified
            if `include_top` is False (otherwise the input shape
            has to be `(224, 224, 3)` (with `channels_last` data format)
            or `(3, 224, 224)` (with `channels_first` data format).
            It should have exactly 3 inputs channels.
        classes: optional number of classes to classify images
            into, only to be specified if `include_top` is True, and
            if no `weights` argument is specified.

    Returns:
        A Keras model instance.

    Raises:
        ValueError: in case of invalid argument for `weights`,
            or invalid input shape.
    """

    global backend, layers, models, keras_utils
    backend, layers, models, keras_utils = get_submodules_from_kwargs(kwargs)

    residual_block = model_params.residual_block
    init_filters = model_params.init_filters
    bn_params = get_bn_params()

    # define input
    if input_tensor is None:
        input = layers.Input(shape=input_shape, name='input')
    else:
        if not backend.is_keras_tensor(input_tensor):
            input = layers.Input(tensor=input_tensor, shape=input_shape)
        else:
            input = input_tensor

    x = input

    if model_params.input_3x3:

        x = layers.ZeroPadding2D(1)(x)
        x = layers.Conv2D(init_filters, (3, 3), strides=2,
                          use_bias=False, kernel_initializer='he_uniform')(x)
        x = layers.BatchNormalization(**bn_params)(x)
        x = layers.Activation('relu')(x)

        x = layers.ZeroPadding2D(1)(x)
        x = layers.Conv2D(init_filters, (3, 3), use_bias=False,
                          kernel_initializer='he_uniform')(x)
        x = layers.BatchNormalization(**bn_params)(x)
        x = layers.Activation('relu')(x)

        x = layers.ZeroPadding2D(1)(x)
        x = layers.Conv2D(init_filters * 2, (3, 3), use_bias=False,
                          kernel_initializer='he_uniform')(x)
        x = layers.BatchNormalization(**bn_params)(x)
        x = layers.Activation('relu')(x)

    else:
        x = layers.ZeroPadding2D(3)(x)
        x = layers.Conv2D(init_filters, (7, 7), strides=2, use_bias=False,
                          kernel_initializer='he_uniform')(x)
        x = layers.BatchNormalization(**bn_params)(x)
        x = layers.Activation('relu')(x)

    x = layers.ZeroPadding2D(1)(x)
    x = layers.MaxPooling2D((3, 3), strides=2)(x)

    # body of resnet
    filters = model_params.init_filters * 2
    for i, stage in enumerate(model_params.repetitions):

        # increase number of filters with each stage
        filters *= 2

        for j in range(stage):

            # decrease spatial dimensions for each stage (except first, because we have maxpool before)
            if i == 0 and j == 0:
                x = residual_block(filters, reduction=model_params.reduction,
                                   strides=1, groups=model_params.groups, is_first=True, **kwargs)(x)

            elif i != 0 and j == 0:
                x = residual_block(filters, reduction=model_params.reduction,
                                   strides=2, groups=model_params.groups, **kwargs)(x)
            else:
                x = residual_block(filters, reduction=model_params.reduction,
                                   strides=1, groups=model_params.groups, **kwargs)(x)

    if include_top:
        x = layers.GlobalAveragePooling2D()(x)
        if model_params.dropout is not None:
            x = layers.Dropout(model_params.dropout)(x)
        x = layers.Dense(classes)(x)
        x = layers.Activation('softmax', name='output')(x)

    # Ensure that the model takes into account any potential predecessors of `input_tensor`.
    if input_tensor is not None:
        inputs = keras_utils.get_source_inputs(input_tensor)
    else:
        inputs = input

    model = models.Model(inputs, x)

    if weights:
        if type(weights) == str and os.path.exists(weights):
            model.load_weights(weights)
        else:
            load_model_weights(model, model_params.model_name,
                               weights, classes, include_top, **kwargs)

    return model
示例#4
0
def ResNeXt(
        model_params,
        include_top=True,
        input_tensor=None,
        input_shape=None,
        classes=1000,
        weights='imagenet',
        **kwargs):
    """Instantiates the ResNet, SEResNet architecture.
    Optionally loads weights pre-trained on ImageNet.
    Note that the data format convention used by the model is
    the one specified in your Keras config at `~/.keras/keras.json`.

    Args:
        include_top: whether to include the fully-connected
            layer at the top of the network.
        weights: one of `None` (random initialization),
              'imagenet' (pre-training on ImageNet),
              or the path to the weights file to be loaded.
        input_tensor: optional Keras tensor
            (i.e. output of `layers.Input()`)
            to use as image input for the model.
        input_shape: optional shape tuple, only to be specified
            if `include_top` is False (otherwise the input shape
            has to be `(224, 224, 3)` (with `channels_last` data format)
            or `(3, 224, 224)` (with `channels_first` data format).
            It should have exactly 3 inputs channels.
        classes: optional number of classes to classify images
            into, only to be specified if `include_top` is True, and
            if no `weights` argument is specified.

    Returns:
        A Keras model instance.

    Raises:
        ValueError: in case of invalid argument for `weights`,
            or invalid input shape.
    """

    global backend, layers, models, keras_utils
    backend, layers, models, keras_utils = get_submodules_from_kwargs(kwargs)

    if input_tensor is None:
        img_input = layers.Input(shape=input_shape, name='data')
    else:
        if not backend.is_keras_tensor(input_tensor):
            img_input = layers.Input(tensor=input_tensor, shape=input_shape)
        else:
            img_input = input_tensor

    # get parameters for model layers
    no_scale_bn_params = get_bn_params(scale=False)
    bn_params = get_bn_params()
    conv_params = get_conv_params()

    # resnext bottom
    x = layers.BatchNormalization(name='bn_data', **no_scale_bn_params)(img_input)
    x = layers.ZeroPadding2D(padding=(3, 3))(x)
    x = layers.Conv2D(64, (7, 7), strides=(2, 2), name='conv0', **conv_params)(x)
    x = layers.BatchNormalization(name='bn0', **bn_params)(x)
    x = layers.Activation('relu', name='relu0')(x)
    x = layers.ZeroPadding2D(padding=(1, 1))(x)
    x = layers.MaxPooling2D((3, 3), strides=(2, 2), padding='valid', name='pooling0')(x)

    # resnext body
    init_filters = 128
    for stage, rep in enumerate(model_params.repetitions):
        for block in range(rep):

            filters = init_filters * (2 ** stage)

            # first block of first stage without strides because we have maxpooling before
            if stage == 0 and block == 0:
                x = conv_block(filters, stage, block, strides=(1, 1), **kwargs)(x)

            elif block == 0:
                x = conv_block(filters, stage, block, strides=(2, 2), **kwargs)(x)

            else:
                x = identity_block(filters, stage, block, **kwargs)(x)

    # resnext top
    if include_top:
        x = layers.GlobalAveragePooling2D(name='pool1')(x)
        x = layers.Dense(classes, name='fc1')(x)
        x = layers.Activation('softmax', name='softmax')(x)

    # Ensure that the model takes into account any potential predecessors of `input_tensor`.
    if input_tensor is not None:
        inputs = keras_utils.get_source_inputs(input_tensor)
    else:
        inputs = img_input

    # Create model
    model = models.Model(inputs, x)

    if weights:
        if type(weights) == str and os.path.exists(weights):
            model.load_weights(weights)
        else:
            load_model_weights(model, model_params.model_name,
                               weights, classes, include_top, **kwargs)

    return model
示例#5
0
def VGG19(include_top=True,
          weights='imagenet',
          input_tensor=None,
          input_shape=None,
          pooling=None,
          classes=1000,
          dropout: float = 0,
          **kwargs):
    print('# DROPOUT:', dropout > 0)
    """Instantiates the VGG19 architecture.

    Optionally loads weights pre-trained on ImageNet.
    Note that the data format convention used by the model is
    the one specified in your Keras config at `~/.keras/keras.json`.

    # Arguments
        include_top: whether to include the 3 fully-connected
            layers at the top of the network.
        weights: one of `None` (random initialization),
              'imagenet' (pre-training on ImageNet),
              or the path to the weights file to be loaded.
        input_tensor: optional Keras tensor
            (i.e. output of `layers.Input()`)
            to use as image input for the model.
        input_shape: optional shape tuple, only to be specified
            if `include_top` is False (otherwise the input shape
            has to be `(224, 224, 3)`
            (with `channels_last` data format)
            or `(3, 224, 224)` (with `channels_first` data format).
            It should have exactly 3 inputs channels,
            and width and height should be no smaller than 32.
            E.g. `(200, 200, 3)` would be one valid value.
        pooling: Optional pooling mode for feature extraction
            when `include_top` is `False`.
            - `None` means that the output of the model will be
                the 4D tensor output of the
                last convolutional block.
            - `avg` means that global average pooling
                will be applied to the output of the
                last convolutional block, and thus
                the output of the model will be a 2D tensor.
            - `max` means that global max pooling will
                be applied.
        classes: optional number of classes to classify images
            into, only to be specified if `include_top` is True, and
            if no `weights` argument is specified.

    # Returns
        A Keras model instance.

    # Raises
        ValueError: in case of invalid argument for `weights`,
            or invalid input shape.
    """
    backend, layers, models, keras_utils = get_submodules_from_kwargs(kwargs)

    if not (weights in {'imagenet', None} or os.path.exists(weights)):
        raise ValueError('The `weights` argument should be either '
                         '`None` (random initialization), `imagenet` '
                         '(pre-training on ImageNet), '
                         'or the path to the weights file to be loaded.')

    if weights == 'imagenet' and include_top and classes != 1000:
        raise ValueError(
            'If using `weights` as `"imagenet"` with `include_top`'
            ' as true, `classes` should be 1000')
    # Determine proper input shape
    input_shape = _obtain_input_shape(input_shape,
                                      default_size=224,
                                      min_size=32,
                                      data_format=backend.image_data_format(),
                                      require_flatten=include_top,
                                      weights=weights)

    if input_tensor is None:
        img_input = layers.Input(shape=input_shape)
    else:
        if not backend.is_keras_tensor(input_tensor):
            img_input = layers.Input(tensor=input_tensor, shape=input_shape)
        else:
            img_input = input_tensor
    # Block 1
    x = layers.Conv2D(64, (3, 3),
                      activation='relu',
                      padding='same',
                      name='block1_conv1')(img_input)
    x = layers.Conv2D(64, (3, 3),
                      activation='relu',
                      padding='same',
                      name='block1_conv2')(x)
    x = layers.MaxPooling2D((2, 2), strides=(2, 2), name='block1_pool')(x)
    x = add_dropout(x, dropout)

    # Block 2
    x = layers.Conv2D(128, (3, 3),
                      activation='relu',
                      padding='same',
                      name='block2_conv1')(x)
    x = layers.Conv2D(128, (3, 3),
                      activation='relu',
                      padding='same',
                      name='block2_conv2')(x)
    x = layers.MaxPooling2D((2, 2), strides=(2, 2), name='block2_pool')(x)
    x = add_dropout(x, dropout)

    # Block 3
    x = layers.Conv2D(256, (3, 3),
                      activation='relu',
                      padding='same',
                      name='block3_conv1')(x)
    x = layers.Conv2D(256, (3, 3),
                      activation='relu',
                      padding='same',
                      name='block3_conv2')(x)
    x = layers.Conv2D(256, (3, 3),
                      activation='relu',
                      padding='same',
                      name='block3_conv3')(x)
    x = layers.Conv2D(256, (3, 3),
                      activation='relu',
                      padding='same',
                      name='block3_conv4')(x)
    x = layers.MaxPooling2D((2, 2), strides=(2, 2), name='block3_pool')(x)
    x = add_dropout(x, dropout)

    # Block 4
    x = layers.Conv2D(512, (3, 3),
                      activation='relu',
                      padding='same',
                      name='block4_conv1')(x)
    x = layers.Conv2D(512, (3, 3),
                      activation='relu',
                      padding='same',
                      name='block4_conv2')(x)
    x = layers.Conv2D(512, (3, 3),
                      activation='relu',
                      padding='same',
                      name='block4_conv3')(x)
    x = layers.Conv2D(512, (3, 3),
                      activation='relu',
                      padding='same',
                      name='block4_conv4')(x)
    x = layers.MaxPooling2D((2, 2), strides=(2, 2), name='block4_pool')(x)
    x = add_dropout(x, dropout)

    # Block 5
    x = layers.Conv2D(512, (3, 3),
                      activation='relu',
                      padding='same',
                      name='block5_conv1')(x)
    x = layers.Conv2D(512, (3, 3),
                      activation='relu',
                      padding='same',
                      name='block5_conv2')(x)
    x = layers.Conv2D(512, (3, 3),
                      activation='relu',
                      padding='same',
                      name='block5_conv3')(x)
    x = layers.Conv2D(512, (3, 3),
                      activation='relu',
                      padding='same',
                      name='block5_conv4')(x)
    x = layers.MaxPooling2D((2, 2), strides=(2, 2), name='block5_pool')(x)
    x = add_dropout(x, dropout)

    if include_top:
        # Classification block
        x = layers.Flatten(name='flatten')(x)
        x = layers.Dense(4096, activation='relu', name='fc1')(x)
        x = layers.Dense(4096, activation='relu', name='fc2')(x)
        x = layers.Dense(classes, activation='softmax', name='predictions')(x)
    else:
        if pooling == 'avg':
            x = layers.GlobalAveragePooling2D()(x)
        elif pooling == 'max':
            x = layers.GlobalMaxPooling2D()(x)

    # Ensure that the model takes into account
    # any potential predecessors of `input_tensor`.
    if input_tensor is not None:
        inputs = keras_utils.get_source_inputs(input_tensor)
    else:
        inputs = img_input
    # Create model.
    model = models.Model(inputs, x, name='vgg19')

    # Load weights.
    if weights == 'imagenet':
        if include_top:
            weights_path = keras_utils.get_file(
                'vgg19_weights_tf_dim_ordering_tf_kernels.h5',
                WEIGHTS_PATH,
                cache_subdir='models',
                file_hash='cbe5617147190e668d6c5d5026f83318')
        else:
            weights_path = keras_utils.get_file(
                'vgg19_weights_tf_dim_ordering_tf_kernels_notop.h5',
                WEIGHTS_PATH_NO_TOP,
                cache_subdir='models',
                file_hash='253f8cb515780f3b799900260a226db6')
        model.load_weights(weights_path)
        if backend.backend() == 'theano':
            keras_utils.convert_all_kernels_in_model(model)
    elif weights is not None:
        model.load_weights(weights)

    return model