def main(): parser = argparse.ArgumentParser(description="classify the instrument in the music sample") parser.add_argument("-i", dest="filename", required=True, help="input file in WAV format") args = parser.parse_args() filename = args.filename check_format(filename) model_instrument = load_model("29_svm_instrument") model_family = load_model("29_svm_family") scaler = load_model("scaler_instrument") print("Family: %s" % predict(model_family, filename, scaler)) print("Instrument: %s" % predict(model_instrument, filename, scaler))
async def get_answer(data: review_sentiment): review = dict(data)['review'] name_model = dict(data)['name_model'] n_class = dict(data)['n_class'] if n_class != 0: Model = sentiment_analysis(n_class, name_model) else: Model = load_model(name_model) d = {'content': [str(review)]} df = pd.DataFrame(d) tokenizer = Model.tokenizer dataloader = create_data_loader(df, tokenizer, max_len=32, batch_size=8) for data in dataloader: input_ids = data['input_ids'] attention_mask = data['attention_mask'] prediction = Model.predict(input_ids, attention_mask) sentiment = get_sentiment(str(prediction.numpy()[0])) return JSONResponse(sentiment) #if __name__ == '__main__': #uvicorn.run(app, host='127.0.0.1', port=8000)
def get_embedding_activations(baseline_path, adv_path, data_path, desc_path, batch_size, embedding_type): train_data, val_data, events, vocab = loadExperimentData(desc_path=desc_path, embedding_type=embedding_type, data_path=data_path) embedding_dim = train_data[0][0].shape[1] val_batches = batchify(val_data, batch_size, classifier_mode='adversarial', embedding_dim=embedding_dim, randomize=False) crit_labels = {'low': 0, 'high': 1} crit_output_size = len(crit_labels) baseline_model= load_model(baseline_path) adv_model = load_model(adv_path) index=0 for x, y_event, y_crit, seq_lengths, sentences in val_batches: adv_x= x.clone().detach().requires_grad_(True) adv_model.zero_grad() y_pred_event, y_pred_crit, _ = adv_model(adv_x, seq_lengths) loss = adv_model.loss(y_pred_crit, y_crit, seq_lengths, crit_output_size) #loss = loss_event + loss_crit #loss= loss_crit loss.backward() adv_gradients = adv_x.grad del loss #del loss_crit baseline_x = x.clone().detach().requires_grad_(True) baseline_model.zero_grad() y_pred_baseline, _ = baseline_model(baseline_x, seq_lengths) loss_baseline = baseline_model.loss(y_pred_baseline, y_crit, seq_lengths) loss_baseline.backward() baseline_gradients = baseline_x.grad for i in range(batch_size): print('Current Sentence: '+str(index) +'\t'+str(y_crit[i].item())+ '\t'+ sentences[i]) index+=1 tokens= sentences[i].split() fig, (ax1, ax2) = plt.subplots(1, 2) #fig.set_figwidth(50) fig.set_figwidth(9) ax1.title.set_text('Baseline Model') ax2.title.set_text('Adversarial Model') visualize_saliency(baseline_gradients[i, :seq_lengths[i]], tokens, ax1) visualize_saliency(adv_gradients[i,:seq_lengths[i]], len(tokens)*[''], ax2) fig.savefig('../figures/figure_' +str(index)+ '.pdf') del loss_baseline
def new_model(compile=True): G = new_G() D = classifier.load_model(for_test=True) D.trainable = False i = keras.layers.Input(input_shape) GAN = keras.models.Model(i, D(G(i))) if compile: GAN.compile(optimizer='RMSProp', loss='mse', metrics=['accuracy']) return GAN, G, D
def main(): df = pd.read_csv(args.path) sentiment_analyser = load_model('best_model_state') tokenizer = sentiment_analyser.tokenizer dataloader = create_data_loader(df, tokenizer, max_len=args.max_len, batch_size=args.batch_size) for data in dataloader: input_ids = data['input_ids'] attention_mask = data['attention_mask'] prediction = sentiment_analyser.predict(input_ids, attention_mask) print(prediction.numpy())
import cv2 import os import numpy as np import matplotlib.pyplot as plt import matplotlib.image as mpimg from utils import * import classifier as clf import detector def pipeline(image): image = detector.detect(image) return image if __name__ == '__main__': model = clf.load_model('model.pkl') detector = detector.Detector(model, clf.settings) #utils.image_preview('./test_images/test1.jpg') #video_preview('test_video.mp4', pipeline) video_output('project_video.mp4', pipeline)
if args.train.endswith('.npz'): import numpy npzarrays = numpy.load(args.train) X, Y = npzarrays['xs'], npzarrays['ys'] else: X, Y = feature.extract_all(reader.read_audios(args.train), train=True, binary_class=True, persist=True) model_path = classifier.train_pipeline(X, Y) print("============") print("model saved at " + model_path) print("============") if args.segment: model = classifier.load_model(args.segment[0]) for wav in reader.read_audios(args.segment[1], file_per_dir=args.numfiles): predicted = classifier.predict_pipeline(wav, model) smoothed = smoothing.smooth(predicted) speech_portions, total_frames = writer.index_frames(smoothed) audio_fname = os.path.join(*wav) writer.print_durations(speech_portions, audio_fname, total_frames) if args.out: print('writing files') writer.slice_speech(speech_portions, audio_fname) if args.evaluate: model = classifier.load_model(args.evaluate[0]) evaluation.evaluate_files(args.evaluate[1], model, args.numfiles)
if args.cpu: os.environ["CUDA_VISIBLE_DEVICES"] = "-1" if args.train: start = time.perf_counter() X, Y = feature.extract_all(reader.read_wavs(args.train), train=True, binary_class=args.binary) model_path = classifier.train_pipeline(X, Y) print("============") print(f"model saved at {model_path}") print(f"time elapsed: {time.perf_counter()-start:0.4f} seconds") print("============") if args.segment: # include 'dat' file extension for Galaxy data files for wav in reader.read_wavs(args.segment[1], file_ext=['mp3', 'wav', 'mp4', 'dat']): start = time.perf_counter() model = classifier.load_model(args.segment[0]) predicted = classifier.predict_pipeline(wav, model) smoothed = smoothing.smooth(predicted, int(args.threshold), args.binary) amp_segments = AmpSegment(wav[1], smoothed) if args.out: writer.save_json(amp_segments, wav, args.out) print( f"Finished {wav} in {time.perf_counter()-start:0.4f} seconds")
import numpy as np import os, sys import classifier as cf IGM_DIR = "./images/" NN = False # モデルをロード if (len(sys.argv) > 1): if (sys.argv[1] == "CNN"): NN = True print("NN") if NN == False else print("CNN") cf.load_model(NN) for dir_name in os.listdir(IGM_DIR): dir_size = 0 ans_list = np.zeros(10) print("DIR:", dir_name, end="") for filename in os.listdir(IGM_DIR + dir_name): x = cf.load_image(IGM_DIR + dir_name + "/" + filename, NN) ans = cf.classifier(x) ans_list[ans] += 1 dir_size += 1 maxIndex = [i for i, x in enumerate(ans_list) if x == max(ans_list)] print("-> Most:", maxIndex) print("{0}:".format(dir_size), ans_list)
from sklearn.feature_extraction.text import CountVectorizer from classifier import load_vocabulary, load_model, tf_idf, fetch_train_dataset, DEFAULT_CATEGORIES from sys_helpers import exit_if_error, wait_for_crl_c from kafka_helpers import KAFKA_TWEET_TOPIC, get_kafka_hosts, create_kafka_consumer print("Loading pre-trained model...") vocabulary, err = load_vocabulary() exit_if_error(err) count_vect = CountVectorizer(vocabulary=vocabulary) count_vect._validate_vocabulary() model, err = load_model() exit_if_error(err) tfidf_transformer = tf_idf(DEFAULT_CATEGORIES)[0] print("Connecting to consume Kafka stream...") consumer, err = create_kafka_consumer(KAFKA_TWEET_TOPIC, get_kafka_hosts()) exit_if_error(err) print("Ready to make predictions...") wait_for_crl_c() for message in consumer: msg = message.value.decode("utf-8") X_new_counts = count_vect.transform([msg])
def detect_fake_review(url): html=requests.get(url).text reviews=parse_yelp_page(html) classifier.load_model() classify_result=classifier.check(reviews) return update_html(html, classify_result)
heatmap = utils.get_heatmap(image, out_windows) heatmap = self.smoother(heatmap) heatmap = utils.apply_threshold(heatmap,3) boxes = utils.get_labeled_boxes(heatmap) else: windows = utils.slide_window(image, x_start_stop=[None, None], y_start_stop=self.y_start_stop, xy_window=(64, 64), xy_overlap=(0.85, 0.85)) boxes = self.search_windows(image, windows) final_image = utils.draw_boxes(image, boxes, color=(0, 0, 255), thick=6) return final_image if __name__ == '__main__': from classifier import load_model, settings model = load_model('model.pkl') detector = Detector(model, settings) images_path = './test_images/' fig = plt.figure(figsize=(10,10)) fig.subplots_adjust(left=0.05, bottom=0.05, right=0.98, top=0.98) row = len(os.listdir(images_path)) col = 3 index = 0 for filename in os.listdir(images_path): image = mpimg.imread(images_path + filename) index += 1 plt.subplot(row, col, index) out_windows = detector.find_multiscale(image) window_img = utils.draw_boxes(image, out_windows, color=(0, 0, 255), thick=6)
if top_k == 1: top_classes = [idx_to_class[int(top_labels)]] top_probs = [float(top_probs)] else: top_classes = [idx_to_class[each] for each in top_labels] return top_probs, top_classes # [END] # [START The main function which drives the script] if __name__ == '__main__': image_path = args.input model = load_model(args.checkpoint) if args.gpu and torch.cuda.is_available(): model.cuda() model.eval() top_probs, top_classes = predict(image_path, model, top_k=args.top_k, cuda=args.gpu) if args.category_names is not None: class_to_name = load_label_map(args.category_names) top_classes = [class_to_name[each] for each in top_classes]
#Add classifier directory so we can import it sys.path.insert(0, os.getcwd() + '/Classifier') import cv2 import classifier import classifier_const from flask import Flask, request import unicodedata import numpy as np #The main server app = Flask(__name__) #A model trained off our data current_model = classifier.load_model("model_final") #GET request handler for an image | The request encodes the image @app.route("/api/classify/", methods=['GET']) def classify(): #Parse the raw string into raw data image_raw = request.args.get('raw') input_string = image_raw.rsplit('/', 3) input_string[0] = input_string[0].replace(' ', '+') #'+' gets encoded as ' ' for i in range(len(input_string)): input_string[i] = unicodedata.normalize('NFKD', input_string[i]).encode(
review = st.text_input( "Please provide your review:", value="This movie is super bad and the worst thing I've ever watched") run_query = st.button("Run") if local_model and not hugging_face_model: n_class = 0 path = st.sidebar.text_input( 'Please enter the full path to the folder of the classification model.' ) get_local_model = st.sidebar.button("Get_model from disk") if get_local_model: with st.spinner('Getting model from disk'): local_model_ = load_model(path) if local_model_ != None: st.write('Got model') else: st.write('Model doesn not exists in the directory provided') print(run_query) if run_query: print('hello') run_local_model(review=review, path=path) elif hugging_face_model and not local_model: name_model = st.sidebar.text_input( 'Please enter the name of the model from huggingface hub', value='bert-base-cased') get_model = st.sidebar.button("Get_model from hub") #This is to check if the model_name we typed exists in huggingface or not