def histogramContour(des,codeBookCenters): histPoints = classifier.minDistance(des,codeBookCenters) return histPoints[0]
def histogramContour(des, codeBookCenters): histPoints = classifier.minDistance(des, codeBookCenters) return histPoints[0]
listDir.append("background/") histogramSVM = [] labels = [] HistogramComputed = 0 # testing the things dirCount = 0 for direct in listDir: fileList = glob.glob(rootInputName + listDir[dirCount] + formatName) print ("Current Directory Name:" + rootInputName + listDir[dirCount]) count = 0 for files in fileList: inputImage=cv2.imread(fileList[count]) fileName = os.path.basename(fileList[count]) roiImageFiltered = inputImage kp, roiKeyPointImage = detDes.featureDetectCorner(roiImageFiltered) kp, des, roiKeyPointImage = detDes.featureDescriptorORB(roiImageFiltered, kp) if np.size(kp)>0: histPoints = classifier.minDistance(des,codeBookCenters) histogramSVM.append(histPoints[0]) labels.append([dirCount]) HistogramComputed = HistogramComputed + 1 print ("Histogram computed for the chosen Image. directory = " + str(dirCount) + 'image number' + str(count)) count = count + 1 dirCount = dirCount + 1 histogramNew = np.float32(np.array(histogramSVM)) labelsNew = np.float32(np.array(labels)) np.save("SVM/TrainingData25000.npy", histogramNew) np.save("SVM/TrainingLabels25000.npy", labelsNew)
histogramSVM = [] labels = [] HistogramComputed = 0 # testing the things dirCount = 0 for direct in listDir: fileList = glob.glob(rootInputName + listDir[dirCount] + formatName) print("Current Directory Name:" + rootInputName + listDir[dirCount]) count = 0 for files in fileList: inputImage = cv2.imread(fileList[count]) fileName = os.path.basename(fileList[count]) roiImageFiltered = inputImage #cv2.medianBlur(inputImage, 3) kp, roiKeyPointImage = detDes.featureDetectCorner(roiImageFiltered) kp, des, roiKeyPointImage = detDes.featureDescriptorORB( roiImageFiltered, kp) if np.size(kp) > 0: histPoints = classifier.minDistance(des, codeBookCenters) histogramSVM.append(histPoints[0]) labels.append([dirCount]) HistogramComputed = HistogramComputed + 1 print("Histogram computer for the chosen Image.") count = count + 1 dirCount = dirCount + 1 histogramNew = np.float32(np.array(histogramSVM)) labelsNew = np.float32(np.array(labels)) np.save("TrainingSet/SVMCodes/Noise/Testing/TestingData.npy", histogramNew) np.save("TrainingSet/SVMCodes/Noise/Testing/TestingLabels.npy", labelsNew)